The table below gives the probability of that a Poisson random variable X with mean $= \lambda$ is less than or equal to x. That is, the table gives

$$P(X \leq x) = \sum_{r=0}^{x} \frac{e^{-\lambda} \lambda^r}{r!}$$

<table>
<thead>
<tr>
<th>λ</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x=0$</td>
<td>0.9048</td>
<td>0.8187</td>
<td>0.7408</td>
<td>0.6703</td>
<td>0.6065</td>
<td>0.5488</td>
<td>0.4966</td>
<td>0.4493</td>
<td>0.4066</td>
<td>0.3679</td>
<td>0.3012</td>
<td>0.2466</td>
<td>0.2019</td>
<td>0.1653</td>
</tr>
<tr>
<td>1</td>
<td>0.9953</td>
<td>0.9825</td>
<td>0.9631</td>
<td>0.9384</td>
<td>0.9098</td>
<td>0.8781</td>
<td>0.8442</td>
<td>0.8088</td>
<td>0.7725</td>
<td>0.7358</td>
<td>0.6626</td>
<td>0.5918</td>
<td>0.5249</td>
<td>0.4628</td>
</tr>
<tr>
<td>2</td>
<td>0.9998</td>
<td>0.9989</td>
<td>0.9964</td>
<td>0.9921</td>
<td>0.9856</td>
<td>0.9769</td>
<td>0.9659</td>
<td>0.9526</td>
<td>0.9371</td>
<td>0.9197</td>
<td>0.8795</td>
<td>0.8335</td>
<td>0.7834</td>
<td>0.7306</td>
</tr>
<tr>
<td>3</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9997</td>
<td>0.9992</td>
<td>0.9982</td>
<td>0.9966</td>
<td>0.9942</td>
<td>0.9909</td>
<td>0.9865</td>
<td>0.9810</td>
<td>0.9662</td>
<td>0.9463</td>
<td>0.9212</td>
<td>0.8913</td>
</tr>
<tr>
<td>4</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9998</td>
<td>0.9996</td>
<td>0.9992</td>
<td>0.9986</td>
<td>0.9977</td>
<td>0.9963</td>
<td>0.9923</td>
<td>0.9857</td>
<td>0.9763</td>
<td>0.9636</td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
</tr>
<tr>
<td>6</td>
<td>1.0000</td>
</tr>
<tr>
<td>7</td>
<td>1.0000</td>
</tr>
<tr>
<td>8</td>
<td>1.0000</td>
</tr>
<tr>
<td>9</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ</th>
<th>2.0</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
<th>3.0</th>
<th>3.2</th>
<th>3.4</th>
<th>3.6</th>
<th>3.8</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x=0$</td>
<td>0.1353</td>
<td>0.1108</td>
<td>0.0907</td>
<td>0.0743</td>
<td>0.0608</td>
<td>0.0498</td>
<td>0.0408</td>
<td>0.0334</td>
<td>0.0273</td>
<td>0.0224</td>
<td>0.0183</td>
<td>0.0111</td>
<td>0.0067</td>
<td>0.0041</td>
</tr>
<tr>
<td>1</td>
<td>0.4060</td>
<td>0.3546</td>
<td>0.3084</td>
<td>0.2674</td>
<td>0.2311</td>
<td>0.1991</td>
<td>0.1712</td>
<td>0.1468</td>
<td>0.1257</td>
<td>0.1074</td>
<td>0.0916</td>
<td>0.0611</td>
<td>0.0404</td>
<td>0.0266</td>
</tr>
<tr>
<td>2</td>
<td>0.7677</td>
<td>0.6227</td>
<td>0.5697</td>
<td>0.5184</td>
<td>0.4695</td>
<td>0.4232</td>
<td>0.3799</td>
<td>0.3397</td>
<td>0.3027</td>
<td>0.2689</td>
<td>0.2381</td>
<td>0.1736</td>
<td>0.1247</td>
<td>0.0884</td>
</tr>
<tr>
<td>3</td>
<td>0.8571</td>
<td>0.8194</td>
<td>0.7787</td>
<td>0.7360</td>
<td>0.6919</td>
<td>0.6472</td>
<td>0.6025</td>
<td>0.5584</td>
<td>0.5152</td>
<td>0.4735</td>
<td>0.4323</td>
<td>0.3426</td>
<td>0.2650</td>
<td>0.2017</td>
</tr>
<tr>
<td>4</td>
<td>0.9473</td>
<td>0.9275</td>
<td>0.9041</td>
<td>0.8774</td>
<td>0.8477</td>
<td>0.8153</td>
<td>0.7806</td>
<td>0.7442</td>
<td>0.7064</td>
<td>0.6678</td>
<td>0.6288</td>
<td>0.5321</td>
<td>0.4405</td>
<td>0.3575</td>
</tr>
<tr>
<td>5</td>
<td>0.9834</td>
<td>0.9751</td>
<td>0.9643</td>
<td>0.9510</td>
<td>0.9349</td>
<td>0.9161</td>
<td>0.8946</td>
<td>0.8705</td>
<td>0.8441</td>
<td>0.8156</td>
<td>0.7851</td>
<td>0.7029</td>
<td>0.6160</td>
<td>0.5289</td>
</tr>
<tr>
<td>6</td>
<td>0.9955</td>
<td>0.9925</td>
<td>0.9884</td>
<td>0.9828</td>
<td>0.9756</td>
<td>0.9665</td>
<td>0.9554</td>
<td>0.9421</td>
<td>0.9267</td>
<td>0.9091</td>
<td>0.8893</td>
<td>0.8311</td>
<td>0.7622</td>
<td>0.6860</td>
</tr>
<tr>
<td>7</td>
<td>0.9989</td>
<td>0.9980</td>
<td>0.9967</td>
<td>0.9947</td>
<td>0.9919</td>
<td>0.9881</td>
<td>0.9832</td>
<td>0.9769</td>
<td>0.9692</td>
<td>0.9599</td>
<td>0.9489</td>
<td>0.9134</td>
<td>0.8666</td>
<td>0.8095</td>
</tr>
<tr>
<td>8</td>
<td>0.9998</td>
<td>0.9995</td>
<td>0.9991</td>
<td>0.9985</td>
<td>0.9976</td>
<td>0.9962</td>
<td>0.9943</td>
<td>0.9917</td>
<td>0.9883</td>
<td>0.9840</td>
<td>0.9786</td>
<td>0.9597</td>
<td>0.9319</td>
<td>0.8944</td>
</tr>
<tr>
<td>9</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9998</td>
<td>0.9996</td>
<td>0.9993</td>
<td>0.9989</td>
<td>0.9982</td>
<td>0.9973</td>
<td>0.9960</td>
<td>0.9942</td>
<td>0.9919</td>
<td>0.9829</td>
<td>0.9682</td>
<td>0.9462</td>
</tr>
<tr>
<td>10</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

$X \leq x$. That is, the table gives $P(X \leq x)$ for different values of λ and x. The table includes values for λ ranging from 0.1 to 1.8 and x ranging from 0 to 9. The table provides the cumulative probability of the Poisson distribution for various values of the mean λ and the variable x. The cumulative distribution function (CDF) is calculated using the formula $P(X \leq x) = \sum_{r=0}^{x} \frac{e^{-\lambda} \lambda^r}{r!}$.