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Introduction

Que: When one can construct a Hilbert space out of a given set X ?

Aim: To find a necessary and sufficient condition on X under which there exists a
Hilbert space H and a map ℘ : X → H satisfying “some properties”?

Observations: Suppose there exists a Hilbert space H and a map ℘ : X → H.

Define k : X × X → C by k(x, y) := 〈℘(x), ℘(y)〉 for all x, y ∈ X .

Fix n ≥ 1 and let {x1, x2, · · · , xn} ⊆ X . Then

n∑
i,j=1

λiλjk(xi, xj) =

n∑
i,j=1

λiλj〈℘(xi), ℘(xj)〉

=
∥∥ n∑
i=1

λi℘(xi)
∥∥2

≥ 0

for all {λ1, λ2, · · · , λn} ⊆ C.

Thus there exists a “positive definite kernel” k on X .
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Positive definite kernel

Definition: A positive definite kernel (p.d.k) on a set X is a map k : X × X → C
satisfying

n∑
i,j=1

λiλjk(xi, xj) ≥ 0

for all x1, · · · , xn ∈ X , λ1, · · · , λn ∈ C, n ∈ N.

Example:

Suppose H is a Hilbert space and let X = H.

Define k : X × X → C by k(x, y) = 〈x, y〉.∑n
i,j=1 λiλjk(xi, xj) =

∑n
i,j=1 λiλj〈xi, xj〉

= 〈
∑

i λixi,
∑

j λjxj〉 = ‖
∑

i λixi‖
2 ≥ 0.

k is a p.d.k.
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GNS-pair (H, ℘)

Theorem:(GNS-construction) Let X be a set and k be a p.d.k on X . Then there
a Hilbert space H and a map ℘ : X → H such that

1 k(x, y) = 〈℘(x), ℘(y)〉 for all x, y ∈ X .

2 H = span{℘(x) : x ∈ X}.

proof:

V = {f : X → C such that f(x) = 0 except for finitely many x}.
V is nonempty and forms a complex vector space under pointwise action.

Define 〈·, ·〉 : V× V→ C by 〈f, g〉 :=
∑

x,y∈X f(x)g(y)k(x, y).

〈·, ·〉 is an semi-inner product on the complex vector space V.

Let H be the completion of the quotient space V/N where
N := {f ∈ V : 〈f, f〉 = 0} = {f ∈ V : 〈f, g〉 = 0 for all g ∈ V}.
Define ℘ : X → H by ℘(x) := equivalence class containing the characteristic
function χ{x}, where x ∈ X .

〈℘(x1), ℘(x2)〉 =
∑

x,y χ{x1}(x)χ{x2}(y)k(x, y) = k(x1, x2) for all xi ∈ X .

By construction H = span{℘(x) : x ∈ X}.
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Uniqueness of GNS-pair

Theorem: If (Hi, ℘i), i = 1, 2, are two GNS-pair associated to a p.d.k k on a set
X , then there exists a unitary U : H1 → H2 such that U ◦ ℘1 = ℘2, that is, the
following diagram commutes:

X

H1

H2

℘1

℘2

U

Proof:

Hi = span℘i(X ). Define U : H1 → H2 by U(℘1(x)) = ℘2(x).

U is well defined. For, if ℘1(x) = ℘1(x
′), then〈

℘2(x)− ℘2(x
′), ℘2(y)

〉
= k(x, y)− k(x′, y) =

〈
℘1(x)− ℘1(x

′), ℘1(y)
〉
= 0

for all y ∈ X so that ℘2(x) = ℘2(x
′).〈

U(℘1(x)), U(℘1(y))
〉
=
〈
℘2(x), ℘2(y)

〉
= k(x, y) =

〈
℘1(x), ℘1(y)

〉
.

U is a unitary such that U ◦ ℘1 = ℘2.
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Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.

∑n
i,j=1 λiλjk

(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).

Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.

Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k
(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.

The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Direct sum of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉+ 〈h2, h′2〉.∑n

i,j=1 λiλjk
(
(h1i, h2i), (h1j , h2j)

)
= 〈
∑

i λih1i,
∑

j λjh1j〉+ 〈
∑

i λih2i,
∑

j λjh2j〉 ≥ 0.

k is a p.d.k, and hence there exits the (unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊕ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊕ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉+ 〈h2, h′2〉 for

all h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊕ h2) = λh1 ⊕ λh2.
(h1 ⊕ h2) + (h′

1 ⊕ h′
2) = (h1 + h′

1)⊕ (h2 + h′
2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊕ h2, h′1 ⊕ h′2〉 = 〈h1, h′1〉+ 〈h2, h′2〉.
The unique Hilbert space H is called the direct sum of H1 and H2 and is
denoted by H1 ⊕H2. Note that

H1 ⊕H2 = span{h1 ⊕ h2 : hi ∈ Hi} = {h1 ⊕ h2 : hi ∈ Hi}.

Sumesh (IMSc Chennai) GNS-pair: construction and applications 7 / 14



Examples-Tensor product of Hilbert spaces

Let H1,H2 be two Hilbert spaces and let X = H1 ×H2.

Define k : X × X → C by k
(
(h1, h2), (h

′
1, h
′
2)
)
:= 〈h1, h′1〉〈h2, h′2〉.

With some effort it can be shown that k is a p.d.k, hence there exits the
(unique) GNS-pair (H, ℘).
Denote ℘(h1, h2) by the symbol h1 ⊗ h2.

Then H = span{℘(h1, h2) : hi ∈ Hi} = span{h1 ⊗ h2 : hi ∈ Hi}.
Since 〈℘(h1, h2), ℘(h′1, h′2)〉 = k

(
(h1, h2), (h

′
1, h
′
2)
)
= 〈h1, h′1〉〈h2, h′2〉 for all

h1, h
′
1 ∈ H1;h2, h

′
2 ∈ H2 and λ ∈ C we have

λ(h1 ⊗ h2) = (λh1)⊗ h2 = h1 ⊗ (λh2).
(h1 ⊗ h2) + (h′

1 ⊗ h2) = (h1 + h′
1)⊗ h2.

(h1 ⊗ h2) + (h1 ⊗ h′
2) = h1 ⊗ (h2 + h′

2).

(To prove these consider the norm of the difference.)

From definition of k it follows that 〈h1 ⊗ h2, h′1 ⊗ h′2〉 = 〈h1, h′1〉〈h2, h′2〉.
The unique Hilbert space H is called the tensor product of H1 and H2 and is
denoted by H1 ⊗H2. Note that
H1 ⊗H2 = span{h1 ⊗ h2 : hi ∈ Hi} % {h1 ⊗ h2 : hi ∈ Hi}.
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Applications to dilation theory

Definition: Let T be a bounded linear operator on a Hilbert space H. A dilation
of T is a pair (K, V ) consisting of a Hilbert space K ⊇ H and V ∈ B(K) such that

Tn = PHV
n|H for all n ∈ N, (†)

where PH is the orthogonal projection of K onto H. If V is an isometry
(respectively unitary), then (K, V ) is called an isometric (respectively unitary)
dilation of T .

Since K = H⊕H⊥ we have B(K) =
[
B(H,H) B(H⊥,H)
B(H,H⊥) B(H⊥,H⊥)

]
.

That is, every T ∈ B(K) has the form T =

[
T11 T12
T21 T22

]
and

T (h⊕h′) =
[
T11 T12

T21 T22

](
h
h′

)
=
(

T11h+T12h
′

T21h+T22h
′

)
' (T11h+T12h

′)⊕(T21h+T22h′).

Equation (†) implies that V n =

[
Tn ∗
∗ ∗

]
for all n ≥ 1.
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Sz-Nagy’s dilation

Theorem: Suppose T ∈ B(H) is a contraction, i.e., ‖T‖ ≤ 1. Then there exists a
isometric dilation (K, V ) of T . Moreover, the dilation can be chosen to be
minimal in the sense that K = span{V nh : h ∈ H, n ≥ 0}.

proof:

Let X = {(n, h) : n ≥ 0, h ∈ H}. Define k : X × X → C by

k
(
(m, g), (n, h)

)
=

{
〈g, Tn−mh〉 if m ≤ n
〈g, T ∗(m−n)h〉 if m > n.

It can be shown that k is a p.d.k. Hence there exists GNS-pair (K, ℘).〈
℘(0, h), ℘(0, h′)

〉
= k
(
(0, h), (0, h′)

)
= 〈h, h′〉 for all h, h′ ∈ H.

Identifying h ∈ H with ℘(0, h) we consider
H ⊆ K = span{℘(n, h) : n ≥ 0, h ∈ H}.
Define V : K → K by V (℘(n, h)) = ℘(n+ 1, h).〈
h, PHV

nh
〉
=
〈
h, Tnh

〉
for all h, h′ ∈ H, hence Tn = PHV

n|H.

V nh = V n(℘(0, h)) = ℘(n, h), hence K = span{V nh : h ∈ H, n ≥ 0}.
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Sz-Nagy’s dilation

Theorem: Every isometry V ∈ B(H) has a unitary dilation (K, U) which is
minimal in the sense that K = span{Unh : h ∈ H, n ∈ Z}.

Proof:

Use “Wold decomposition”.

Observation:

Suppose T ∈ B(H) is a contraction.

T
isometric dil.
−−− V n =

[
Tn ∗
∗ ∗

]
unitary dil.
−−− Un =

[
V n ∗
∗ ∗

]
=

Tn ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


Corollary: Every contraction on a Hilbert space has a minimal unitary dilation.
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Theory of dilations

Unitary dilation of two contractions?

Requires commutating contractions.
There exists commuting unitary dilation:

Un
1 U

m
2 =

[
Tn
1 T

m
2 ∗
∗ ∗

]
∀ n,m ≥ 0.

Unitary dilation of three commuting contractions? Not possible !!!

But commuting family of isometries {V1, · · · , Vn} has commuting unitary
dilation:

Um1
1 · · ·Umn

n =

[
V m1
1 · · ·V mn

n ∗
∗ ∗

]
.

Dilation of noncommuting family of opeartors? Possible for “raw
contractions”.

Dilation of a family (semigroup) of operators/maps?

There are lots of questions, answers & problems...
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