GNS-pair: construction and applications

 $\begin{array}{c} Sumesh. \ K\\ {}_{\text{sumeshkpl@gmail.com}} \end{array}$

IIT Madras March 03, 2016

Outline

- Introduction
- Positive definite kernel
- GNS-pair
- 4 Examples
- 5 Applications to dilation theory

Que: When one can construct a Hilbert space out of a given set \mathcal{X} ?

Que: When one can construct a Hilbert space out of a given set \mathcal{X} ?

<u>Aim:</u> To find a necessary and sufficient condition on $\mathcal X$ under which there exists a Hilbert space $\mathcal H$ and a map $\wp: \mathcal X \to \mathcal H$ satisfying "some properties"?

Que: When one can construct a Hilbert space out of a given set \mathcal{X} ?

<u>Aim:</u> To find a necessary and sufficient condition on $\mathcal X$ under which there exists a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ satisfying "some properties"?

Observations: Suppose there exists a Hilbert space \mathcal{H} and a map $\wp: \mathcal{X} \to \mathcal{H}$.

Que: When one can construct a Hilbert space out of a given set \mathcal{X} ?

<u>Aim:</u> To find a necessary and sufficient condition on $\mathcal X$ under which there exists a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ satisfying "some properties"?

Observations: Suppose there exists a Hilbert space \mathcal{H} and a map $\wp: \mathcal{X} \to \mathcal{H}$.

• Define $\mathbf{k}: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $\mathbf{k}(x,y) := \langle \wp(x), \wp(y) \rangle$ for all $x,y \in \mathcal{X}$.

Que: When one can construct a Hilbert space out of a given set X?

<u>Aim:</u> To find a necessary and sufficient condition on $\mathcal X$ under which there exists a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ satisfying "some properties"?

Observations: Suppose there exists a Hilbert space \mathcal{H} and a map $\wp: \mathcal{X} \to \mathcal{H}$.

- Define $\mathtt{k}:\mathcal{X}\times\mathcal{X}\to\mathbb{C}$ by $\mathtt{k}(x,y):=\langle\wp(x),\wp(y)\rangle$ for all $x,y\in\mathcal{X}$.
- Fix $n \ge 1$ and let $\{x_1, x_2, \cdots, x_n\} \subseteq \mathcal{X}$. Then

$$\begin{split} \sum_{i,j=1}^{n} \overline{\lambda_{i}} \lambda_{j} \mathbf{k}(x_{i}, x_{j}) &= \sum_{i,j=1}^{n} \overline{\lambda_{i}} \lambda_{j} \langle \wp(x_{i}), \wp(x_{j}) \rangle \\ &= \left\| \sum_{i=1}^{n} \lambda_{i} \wp(x_{i}) \right\|^{2} \\ &\geq 0 \end{split}$$

for all $\{\lambda_1, \lambda_2, \cdots, \lambda_n\} \subseteq \mathbb{C}$.

Que: When one can construct a Hilbert space out of a given set \mathcal{X} ?

<u>Aim:</u> To find a necessary and sufficient condition on $\mathcal X$ under which there exists a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ satisfying "some properties"?

Observations: Suppose there exists a Hilbert space \mathcal{H} and a map $\wp: \mathcal{X} \to \mathcal{H}$.

- Define $\mathtt{k}:\mathcal{X}\times\mathcal{X}\to\mathbb{C}$ by $\mathtt{k}(x,y):=\langle\wp(x),\wp(y)\rangle$ for all $x,y\in\mathcal{X}$.
- Fix $n \geq 1$ and let $\{x_1, x_2, \cdots, x_n\} \subseteq \mathcal{X}$. Then

$$\begin{split} \sum_{i,j=1}^{n} \overline{\lambda_{i}} \lambda_{j} \mathbf{k}(x_{i}, x_{j}) &= \sum_{i,j=1}^{n} \overline{\lambda_{i}} \lambda_{j} \langle \wp(x_{i}), \wp(x_{j}) \rangle \\ &= \left\| \sum_{i=1}^{n} \lambda_{i} \wp(x_{i}) \right\|^{2} \\ &\geq 0 \end{split}$$

for all $\{\lambda_1, \lambda_2, \cdots, \lambda_n\} \subseteq \mathbb{C}$.

• Thus there exists a "positive definite kernel" k on \mathcal{X} .

Positive definite kernel

$$\sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathbf{k}(x_i, x_j) \ge 0$$

for all $x_1, \dots, x_n \in \mathcal{X}, \ \lambda_1, \dots, \lambda_n \in \mathbb{C}, \ n \in \mathbb{N}.$

Positive definite kernel

 $\underline{\textbf{Definition}} \text{ A positive definite kernel (p.d.k) on a set } \mathcal{X} \text{ is a map } \mathtt{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ satisfying

$$\sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k}(x_i,x_j) \geq 0$$

for all $x_1, \dots, x_n \in \mathcal{X}, \ \lambda_1, \dots, \lambda_n \in \mathbb{C}, \ n \in \mathbb{N}.$

Example:

- Suppose \mathcal{H} is a Hilbert space and let $\mathcal{X} = \mathcal{H}$.
- Define $k : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k(x,y) = \langle x,y \rangle$.
- k is a p.d.k.

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $2 \mathcal{H} = \overline{\operatorname{span}} \{ \wp(x) : x \in \mathcal{X} \}.$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$
- $2 \mathcal{H} = \overline{\mathsf{span}} \{ \wp(x) : x \in \mathcal{X} \}.$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

proof:

 $\bullet \ \mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \, \mathsf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$
- $\mathcal{H} = \overline{\mathsf{span}} \{ \wp(x) : x \in \mathcal{X} \}.$

- $\bullet \ \mathbb{V} = \{f: \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x\}.$
- ullet ${\mathbb V}$ is nonempty and forms a complex vector space under pointwise action.

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\bullet \ \mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- ullet Define $\langle\cdot,\cdot
 angle:\mathbb{V} imes\mathbb{V} o\mathbb{C}$ by $\langle f,g
 angle:=\sum_{x,y\in\mathcal{X}}\overline{f(x)}g(y)\mathtt{k}(x,y).$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- $\bullet \ \, \mathsf{Define} \,\, \langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C} \,\, \mathsf{by} \,\, \langle f, g \rangle := \textstyle \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y).$
- ullet $\langle \cdot, \cdot \rangle$ is an semi-inner product on the complex vector space \mathbb{V} .

<u>Theorem:</u>(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\bullet \ \mathbb{V} = \{f: \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x\}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- $\bullet \ \, \text{Define} \,\, \langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C} \,\, \text{by} \,\, \langle f,g \rangle := \textstyle \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y).$
- $\langle \cdot, \cdot \rangle$ is an semi-inner product on the complex vector space \mathbb{V} .
- Let $\mathcal H$ be the completion of the quotient space $\mathbb V/N$ where $N:=\{f\in\mathbb V:\langle f,f\rangle=0\}$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- $\bullet \ \, \text{Define} \,\, \langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C} \,\, \text{by} \,\, \langle f,g \rangle := \textstyle \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y).$
- $\langle \cdot, \cdot \rangle$ is an semi-inner product on the complex vector space \mathbb{V} .
- Let \mathcal{H} be the completion of the quotient space \mathbb{V}/N where $N:=\{f\in\mathbb{V}:\langle f,f\rangle=0\}=\{f\in\mathbb{V}:\langle f,g\rangle=0 \text{ for all }g\in\mathbb{V}\}.$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- Define $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C}$ by $\langle f, g \rangle := \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y)$.
- $\langle \cdot, \cdot \rangle$ is an semi-inner product on the complex vector space \mathbb{V} .
- Let $\mathcal H$ be the completion of the quotient space $\mathbb V/N$ where $N:=\{f\in\mathbb V:\langle f,f\rangle=0\}=\{f\in\mathbb V:\langle f,g\rangle=0 \text{ for all }g\in\mathbb V\}.$
- Define $\wp: \mathcal{X} \to \mathcal{H}$ by $\wp(x) :=$ equivalence class containing the characteristic function $\chi_{\{x\}}$, where $x \in \mathcal{X}$.

<u>Theorem:</u>(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \mathbf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

- $\mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- $\bullet \ \ \text{Define} \ \langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C} \ \ \text{by} \ \langle f, g \rangle := \textstyle \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y).$
- ullet $\langle\cdot,\cdot
 angle$ is an semi-inner product on the complex vector space $\mathbb{V}.$
- Let $\mathcal H$ be the completion of the quotient space $\mathbb V/N$ where $N:=\{f\in\mathbb V:\langle f,f\rangle=0\}=\{f\in\mathbb V:\langle f,g\rangle=0 \text{ for all }g\in\mathbb V\}.$
- Define $\wp: \mathcal{X} \to \mathcal{H}$ by $\wp(x) :=$ equivalence class containing the characteristic function $\chi_{\{x\}}$, where $x \in \mathcal{X}$.
- $\bullet \ \langle \wp(x_1),\wp(x_2)\rangle =\textstyle \sum_{x,y} \chi_{\{x_1\}}(x)\chi_{\{x_2\}}(y) \mathtt{k}(x,y) = \mathtt{k}(x_1,x_2) \text{ for all } x_i \in \mathcal{X}.$

Theorem:(GNS-construction) Let $\mathcal X$ be a set and k be a p.d.k on $\mathcal X$. Then there a Hilbert space $\mathcal H$ and a map $\wp:\mathcal X\to\mathcal H$ such that

- $\bullet \ \, \mathsf{k}(x,y) = \langle \wp(x), \wp(y) \rangle \text{ for all } x,y \in \mathcal{X}.$

proof:

- $\mathbb{V} = \{ f : \mathcal{X} \to \mathbb{C} \text{ such that } f(x) = 0 \text{ except for finitely many } x \}.$
- $\bullet~\mathbb{V}$ is nonempty and forms a complex vector space under pointwise action.
- Define $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C}$ by $\langle f, g \rangle := \sum_{x,y \in \mathcal{X}} \overline{f(x)} g(y) \mathtt{k}(x,y)$.
- ullet $\langle\cdot,\cdot
 angle$ is an semi-inner product on the complex vector space $\mathbb{V}.$
- Let $\mathcal H$ be the completion of the quotient space $\mathbb V/N$ where $N:=\{f\in\mathbb V:\langle f,f\rangle=0\}=\{f\in\mathbb V:\langle f,g\rangle=0 \text{ for all }g\in\mathbb V\}.$
- Define $\wp: \mathcal{X} \to \mathcal{H}$ by $\wp(x) :=$ equivalence class containing the characteristic function $\chi_{\{x\}}$, where $x \in \mathcal{X}$.
- $\bullet \ \langle \wp(x_1),\wp(x_2)\rangle = \textstyle \sum_{x,y} \chi_{\{x_1\}}(x)\chi_{\{x_2\}}(y) \mathtt{k}(x,y) = \mathtt{k}(x_1,x_2) \text{ for all } x_i \in \mathcal{X}.$
- By construction $\mathcal{H} = \overline{\operatorname{span}}\{\wp(x) : x \in \mathcal{X}\}.$

4 D > 4 A > 4 B > 4 B > B

5 / 14

<u>Theorem:</u> If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Theorem: If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Proof:

• $\mathcal{H}_i = \overline{\operatorname{span}} \, \wp_i(\mathcal{X})$. Define $U: \mathcal{H}_1 \to \mathcal{H}_2$ by $U(\wp_1(x)) = \wp_2(x)$.

Theorem: If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Proof:

- $\mathcal{H}_i = \overline{\operatorname{span}} \, \wp_i(\mathcal{X})$. Define $U : \mathcal{H}_1 \to \mathcal{H}_2$ by $U(\wp_1(x)) = \wp_2(x)$.
- ullet U is well defined. For, if $\wp_1(x)=\wp_1(x')$, then

<u>Theorem:</u> If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Proof:

- $\mathcal{H}_i = \overline{\operatorname{span}} \, \wp_i(\mathcal{X})$. Define $U : \mathcal{H}_1 \to \mathcal{H}_2$ by $U(\wp_1(x)) = \wp_2(x)$.
- ullet U is well defined. For, if $\wp_1(x)=\wp_1(x')$, then

$$\left\langle \wp_2(x) - \wp_2(x'), \wp_2(y) \right\rangle = \mathbf{k}(x,y) - \mathbf{k}(x',y) = \left\langle \wp_1(x) - \wp_1(x'), \wp_1(y) \right\rangle = 0$$

for all $y \in \mathcal{X}$ so that $\wp_2(x) = \wp_2(x')$.

<u>Theorem:</u> If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Proof:

- $\mathcal{H}_i = \overline{\operatorname{span}} \, \wp_i(\mathcal{X})$. Define $U : \mathcal{H}_1 \to \mathcal{H}_2$ by $U(\wp_1(x)) = \wp_2(x)$.
- U is well defined. For, if $\wp_1(x) = \wp_1(x')$, then

$$\left\langle \wp_2(x) - \wp_2(x'), \wp_2(y) \right\rangle = \mathbf{k}(x,y) - \mathbf{k}(x',y) = \left\langle \wp_1(x) - \wp_1(x'), \wp_1(y) \right\rangle = 0$$

for all $y \in \mathcal{X}$ so that $\wp_2(x) = \wp_2(x')$.

 $\bullet \ \left\langle U(\wp_1(x)), U(\wp_1(y)) \right\rangle = \left\langle \wp_2(x), \wp_2(y) \right\rangle = \mathtt{k}(x,y) = \left\langle \wp_1(x), \wp_1(y) \right\rangle.$

<u>Theorem:</u> If (\mathcal{H}_i, \wp_i) , i=1,2, are two GNS-pair associated to a p.d.k k on a set \mathcal{X} , then there exists a unitary $U:\mathcal{H}_1\to\mathcal{H}_2$ such that $U\circ\wp_1=\wp_2$, that is, the following diagram commutes:

Proof:

- $\mathcal{H}_i = \overline{\operatorname{span}} \, \wp_i(\mathcal{X})$. Define $U : \mathcal{H}_1 \to \mathcal{H}_2$ by $U(\wp_1(x)) = \wp_2(x)$.
- U is well defined. For, if $\wp_1(x) = \wp_1(x')$, then

$$\langle \wp_2(x) - \wp_2(x'), \wp_2(y) \rangle = \mathbf{k}(x,y) - \mathbf{k}(x',y) = \langle \wp_1(x) - \wp_1(x'), \wp_1(y) \rangle = 0$$

for all $y \in \mathcal{X}$ so that $\wp_2(x) = \wp_2(x')$.

- $\langle U(\wp_1(x)), U(\wp_1(y)) \rangle = \langle \wp_2(x), \wp_2(y) \rangle = k(x, y) = \langle \wp_1(x), \wp_1(y) \rangle$.
- U is a unitary such that $U \circ \wp_1 = \wp_2$.

• Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- k is a p.d.k, and hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- \bullet k is a p.d.k, and hence there exits the (unique) GNS-pair $(\mathcal{H},\wp).$
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- \bullet k is a p.d.k, and hence there exits the (unique) GNS-pair $(\mathcal{H},\wp).$
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1, h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\}.$

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- \bullet k is a p.d.k, and hence there exits the (unique) GNS-pair $(\mathcal{H},\wp).$
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1, h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \mathtt{k}\big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle + \langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- ullet k is a p.d.k, and hence there exits the (unique) GNS-pair (\mathcal{H},\wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1,h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \mathtt{k}\big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle + \langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \oplus h_2) = \lambda h_1 \oplus \lambda h_2$.
 - $(h_1 \oplus h_2) + (h'_1 \oplus h'_2) = (h_1 + h'_1) \oplus (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i},h_{2i}), (h_{1j},h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- ullet k is a p.d.k, and hence there exits the (unique) GNS-pair (\mathcal{H},\wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}} \{ \wp(h_1, h_2) : h_i \in \mathcal{H}_i \} = \overline{\operatorname{span}} \{ h_1 \oplus h_2 : h_i \in \mathcal{H}_i \}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \mathtt{k}\big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle + \langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \oplus h_2) = \lambda h_1 \oplus \lambda h_2$.
 - $(h_1 \oplus h_2) + (h'_1 \oplus h'_2) = (h_1 + h'_1) \oplus (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

• From definition of k it follows that $\langle h_1 \oplus h_2, h'_1 \oplus h'_2 \rangle = \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- $$\begin{split} \bullet \ \, \sum_{i,j=1}^n \overline{\lambda_i} \lambda_j \mathtt{k} \big((h_{1i}, h_{2i}), (h_{1j}, h_{2j}) \big) \\ = \langle \sum_i \lambda_i h_{1i}, \sum_j \lambda_j h_{1j} \rangle + \langle \sum_i \lambda_i h_{2i}, \sum_j \lambda_j h_{2j} \rangle \geq 0. \end{split}$$
- ullet k is a p.d.k, and hence there exits the (unique) GNS-pair (\mathcal{H},\wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1 \oplus h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1, h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \mathtt{k}\big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle + \langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \oplus h_2) = \lambda h_1 \oplus \lambda h_2$.
 - $(h_1 \oplus h_2) + (h'_1 \oplus h'_2) = (h_1 + h'_1) \oplus (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

- From definition of k it follows that $\langle h_1 \oplus h_2, h'_1 \oplus h'_2 \rangle = \langle h_1, h'_1 \rangle + \langle h_2, h'_2 \rangle$.
- The unique Hilbert space $\mathcal H$ is called the direct sum of $\mathcal H_1$ and $\mathcal H_2$ and is denoted by $\mathcal H_1 \oplus \mathcal H_2$. Note that

$$\mathcal{H}_1 \oplus \mathcal{H}_2 = \overline{\operatorname{span}}\{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\} = \{h_1 \oplus h_2 : h_i \in \mathcal{H}_i\}.$$

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1\otimes h_2$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1\otimes h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1, h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \otimes h_2 : h_i \in \mathcal{H}_i\}.$

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1\otimes h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}} \{ \wp(h_1, h_2) : h_i \in \mathcal{H}_i \} = \overline{\operatorname{span}} \{ h_1 \otimes h_2 : h_i \in \mathcal{H}_i \}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \Bbbk \big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle\langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \otimes h_2) = (\lambda h_1) \otimes h_2 = h_1 \otimes (\lambda h_2).$
 - $(h_1 \otimes h_2) + (h'_1 \otimes h_2) = (h_1 + h'_1) \otimes h_2$.
 - $(h_1 \otimes h_2) + (h_1 \otimes h'_2) = h_1 \otimes (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1\otimes h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}} \{ \wp(h_1, h_2) : h_i \in \mathcal{H}_i \} = \overline{\operatorname{span}} \{ h_1 \otimes h_2 : h_i \in \mathcal{H}_i \}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \Bbbk \big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle\langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \otimes h_2) = (\lambda h_1) \otimes h_2 = h_1 \otimes (\lambda h_2).$
 - $(h_1 \otimes h_2) + (h'_1 \otimes h_2) = (h_1 + h'_1) \otimes h_2$.
 - $(h_1 \otimes h_2) + (h_1 \otimes h'_2) = h_1 \otimes (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

• From definition of k it follows that $\langle h_1 \otimes h_2, h_1' \otimes h_2' \rangle = \langle h_1, h_1' \rangle \langle h_2, h_2' \rangle$.

- Let $\mathcal{H}_1, \mathcal{H}_2$ be two Hilbert spaces and let $\mathcal{X} = \mathcal{H}_1 \times \mathcal{H}_2$.
- Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by $k((h_1, h_2), (h'_1, h'_2)) := \langle h_1, h'_1 \rangle \langle h_2, h'_2 \rangle$.
- With some effort it can be shown that k is a p.d.k, hence there exits the (unique) GNS-pair (\mathcal{H}, \wp) .
- Denote $\wp(h_1,h_2)$ by the symbol $h_1\otimes h_2$.
- Then $\mathcal{H} = \overline{\operatorname{span}}\{\wp(h_1, h_2) : h_i \in \mathcal{H}_i\} = \overline{\operatorname{span}}\{h_1 \otimes h_2 : h_i \in \mathcal{H}_i\}.$
- Since $\langle \wp(h_1,h_2),\wp(h_1',h_2')\rangle = \Bbbk \big((h_1,h_2),(h_1',h_2')\big) = \langle h_1,h_1'\rangle\langle h_2,h_2'\rangle$ for all $h_1,h_1'\in\mathcal{H}_1;h_2,h_2'\in\mathcal{H}_2$ and $\lambda\in\mathbb{C}$ we have
 - $\lambda(h_1 \otimes h_2) = (\lambda h_1) \otimes h_2 = h_1 \otimes (\lambda h_2).$
 - $(h_1 \otimes h_2) + (h'_1 \otimes h_2) = (h_1 + h'_1) \otimes h_2$.
 - $(h_1 \otimes h_2) + (h_1 \otimes h'_2) = h_1 \otimes (h_2 + h'_2).$

(To prove these consider the norm of the difference.)

- From definition of k it follows that $\langle h_1 \otimes h_2, h_1' \otimes h_2' \rangle = \langle h_1, h_1' \rangle \langle h_2, h_2' \rangle$.
- The unique Hilbert space $\mathcal H$ is called the tensor product of $\mathcal H_1$ and $\mathcal H_2$ and is denoted by $\mathcal H_1 \otimes \mathcal H_2$. Note that
 - $\mathcal{H}_1 \otimes \mathcal{H}_2 = \overline{\operatorname{span}} \{ h_1 \otimes h_2 : h_i \in \mathcal{H}_i \} \supseteq \{ h_1 \otimes h_2 : h_i \in \mathcal{H}_i \}.$

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$$
 for all $n \in \mathbb{N}$, (†)

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} .

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$$
 for all $n \in \mathbb{N}$, (†)

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} . If V is an isometry (respectively unitary), then (\mathcal{K},V) is called an isometric (respectively unitary) dilation of T.

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$$
 for all $n \in \mathbb{N}$, (†)

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} . If V is an isometry (respectively unitary), then (\mathcal{K},V) is called an isometric (respectively unitary) dilation of T.

• Since $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}^{\perp}$ we have $\mathfrak{B}(\mathcal{K}) = \begin{bmatrix} \mathfrak{B}(\mathcal{H}, \mathcal{H}) & \mathfrak{B}(\mathcal{H}^{\perp}, \mathcal{H}) \\ \mathfrak{B}(\mathcal{H}, \mathcal{H}^{\perp}) & \mathfrak{B}(\mathcal{H}^{\perp}, \mathcal{H}^{\perp}) \end{bmatrix}$.

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$$
 for all $n \in \mathbb{N}$, (†)

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} . If V is an isometry (respectively unitary), then (\mathcal{K},V) is called an isometric (respectively unitary) dilation of T.

• Since $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}^{\perp}$ we have $\mathcal{B}(\mathcal{K}) = \begin{bmatrix} \mathcal{B}(\mathcal{H}, \mathcal{H}) & \mathcal{B}(\mathcal{H}^{\perp}, \mathcal{H}) \\ \mathcal{B}(\mathcal{H}, \mathcal{H}^{\perp}) & \mathcal{B}(\mathcal{H}^{\perp}, \mathcal{H}^{\perp}) \end{bmatrix}$. That is, every $T \in \mathcal{B}(\mathcal{K})$ has the form $T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$ and

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}} V^n |_{\mathcal{H}} \qquad \text{for all } n \in \mathbb{N}, \tag{\dagger}$$

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} . If V is an isometry (respectively unitary), then (\mathcal{K},V) is called an isometric (respectively unitary) dilation of T.

$$\begin{split} \bullet & \text{ Since } \mathcal{K} = \mathcal{H} \oplus \mathcal{H}^\perp \text{ we have } \mathcal{B}(\mathcal{K}) = \begin{bmatrix} \mathcal{B}(\mathcal{H},\mathcal{H}) & \mathcal{B}(\mathcal{H}^\perp,\mathcal{H}) \\ \mathcal{B}(\mathcal{H},\mathcal{H}^\perp) & \mathcal{B}(\mathcal{H}^\perp,\mathcal{H}^\perp) \end{bmatrix}. \\ \text{ That is, every } T \in \mathcal{B}(\mathcal{K}) \text{ has the form } T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \text{ and } \\ T(h \oplus h') = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \binom{h}{h'} = \begin{pmatrix} T_{11}h + T_{12}h' \\ T_{21}h + T_{22}h' \end{pmatrix} \simeq (T_{11}h + T_{12}h') \oplus (T_{21}h + T_{22}h'). \end{aligned}$$

<u>Definition</u>: Let T be a bounded linear operator on a Hilbert space \mathcal{H} . A dilation of T is a pair (\mathcal{K}, V) consisting of a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and $V \in \mathcal{B}(\mathcal{K})$ such that

$$T^n = P_{\mathcal{H}}V^n|_{\mathcal{H}}$$
 for all $n \in \mathbb{N}$, (†)

where $P_{\mathcal{H}}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H} . If V is an isometry (respectively unitary), then (\mathcal{K},V) is called an isometric (respectively unitary) dilation of T.

- $$\begin{split} \bullet & \text{ Since } \mathcal{K} = \mathcal{H} \oplus \mathcal{H}^\perp \text{ we have } \mathfrak{B}(\mathcal{K}) = \begin{bmatrix} \mathcal{B}(\mathcal{H},\mathcal{H}) & \mathcal{B}(\mathcal{H}^\perp,\mathcal{H}) \\ \mathcal{B}(\mathcal{H},\mathcal{H}^\perp) & \mathcal{B}(\mathcal{H}^\perp,\mathcal{H}^\perp) \end{bmatrix}. \\ & \text{ That is, every } T \in \mathcal{B}(\mathcal{K}) \text{ has the form } T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \text{ and } \\ & T(h \oplus h') = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \binom{h}{h'} = \binom{T_{11}h + T_{12}h'}{T_{21}h + T_{22}h'} \simeq (T_{11}h + T_{12}h') \oplus (T_{21}h + T_{22}h'). \end{aligned}$$
- $\bullet \ \ \text{Equation (\dagger) implies that} \ V^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix} \text{ for all } n \geq 1.$

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K}, V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\text{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K},V) of T. Moreover, the dilation can be chosen to be minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{V^nh: h \in \mathcal{H}, n \geq 0\}$.

proof:

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K},V) of T. Moreover, the dilation can be chosen to be minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{V^nh: h \in \mathcal{H}, n \geq 0\}$.

proof:

• Let $\mathcal{X} = \{(n,h) : n \ge 0, h \in \mathcal{H}\}.$

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K}, V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\text{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

$$\mathbf{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n\\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K}, V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\text{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

• Let $\mathcal{X} = \{(n,h) : n \geq 0, h \in \mathcal{H}\}$. Define $\mathbf{k} : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ by

$$\mathtt{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n \\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

• It can be shown that k is a p.d.k. Hence there exists GNS-pair (\mathcal{K},\wp) .

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K},V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\operatorname{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

$$\mathtt{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n \\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

- ullet It can be shown that ${f k}$ is a p.d.k. Hence there exists GNS-pair $({\cal K},\wp)$.
- $\bullet \ \left\langle \wp(0,h),\wp(0,h')\right\rangle = \mathtt{k}\big((0,h),(0,h')\big) = \left\langle h,h'\right\rangle \ \text{for all} \ h,h' \in \mathcal{H}.$

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K},V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\operatorname{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

$$\mathtt{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n \\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

- It can be shown that k is a p.d.k. Hence there exists GNS-pair (\mathcal{K}, \wp) .
- $\bullet \ \left\langle \wp(0,h),\wp(0,h')\right\rangle = \mathtt{k}\big((0,h),(0,h')\big) = \left\langle h,h'\right\rangle \ \text{for all} \ h,h'\in\mathcal{H}.$
- Identifying $h \in \mathcal{H}$ with $\wp(0,h)$ we consider $\mathcal{H} \subseteq \mathcal{K} = \overline{\operatorname{span}} \{ \wp(n,h) : n \geq 0, h \in \mathcal{H} \}.$

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K}, V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\text{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

$$\mathtt{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n \\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

- It can be shown that k is a p.d.k. Hence there exists GNS-pair (\mathcal{K},\wp) .
- $\bullet \ \left\langle \wp(0,h),\wp(0,h')\right\rangle = \mathtt{k}\big((0,h),(0,h')\big) = \left\langle h,h'\right\rangle \ \text{for all} \ h,h'\in\mathcal{H}.$
- Identifying $h \in \mathcal{H}$ with $\wp(0,h)$ we consider $\mathcal{H} \subseteq \mathcal{K} = \overline{\operatorname{span}} \{ \wp(n,h) : n \geq 0, h \in \mathcal{H} \}.$
- Define $V: \mathcal{K} \to \mathcal{K}$ by $V(\wp(n,h)) = \wp(n+1,h)$.

<u>Theorem:</u> Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction, i.e., $\|T\| \leq 1$. Then there exists a isometric dilation (\mathcal{K}, V) of T. Moreover, the dilation can be chosen to be *minimal* in the sense that $\mathcal{K} = \overline{\text{span}}\{V^n h : h \in \mathcal{H}, n \geq 0\}$.

proof:

$$\mathtt{k}\big((m,g),(n,h)\big) = \begin{cases} \langle g,T^{n-m}h\rangle & \text{if } m \leq n \\ \langle g,T^{*(m-n)}h\rangle & \text{if } m > n. \end{cases}$$

- It can be shown that k is a p.d.k. Hence there exists GNS-pair (\mathcal{K}, \wp) .
- $\bullet \ \left\langle \wp(0,h),\wp(0,h')\right\rangle = \mathtt{k}\big((0,h),(0,h')\big) = \left\langle h,h'\right\rangle \ \text{for all} \ h,h'\in\mathcal{H}.$
- Identifying $h \in \mathcal{H}$ with $\wp(0,h)$ we consider $\mathcal{H} \subseteq \mathcal{K} = \overline{\operatorname{span}} \{ \wp(n,h) : n \geq 0, h \in \mathcal{H} \}.$
- Define $V: \mathcal{K} \to \mathcal{K}$ by $V(\wp(n,h)) = \wp(n+1,h)$.
- $\langle h, P_{\mathcal{H}} V^n h \rangle = \langle h, T^n h \rangle$ for all $h, h' \in \mathcal{H}$, hence $T^n = P_{\mathcal{H}} V^n |_{\mathcal{H}}$.
- $\bullet \ V^nh=V^n(\wp(0,h))=\wp(n,h) \text{, hence } \mathcal{K}=\overline{\operatorname{span}}\{V^nh:h\in\mathcal{H},n\geq 0\}.$

<u>Theorem:</u> Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{U^nh: h \in \mathcal{H}, n \in \mathbb{Z}\}.$

<u>Theorem:</u> Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\operatorname{span}}\{U^n h : h \in \mathcal{H}, \ n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

<u>Theorem:</u> Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{U^nh: h \in \mathcal{H}, n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

Observation:

• Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction.

Theorem: Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{U^nh: h \in \mathcal{H}, \ n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

Observation:

- Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction.
- $\bullet \ T \overset{\text{isometric dil.}}{---} V^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix}$

Theorem: Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{U^nh: h \in \mathcal{H}, \ n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

Observation:

- Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction.
- $\bullet \ T \stackrel{\text{isometric dil.}}{---} \stackrel{\text{line}}{\leadsto} V^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix} \stackrel{\text{unitary dil.}}{----} \stackrel{\text{line}}{\leadsto} U^n = \begin{bmatrix} V^n & * \\ * & * \end{bmatrix}$

Theorem: Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\operatorname{span}}\{U^n h : h \in \mathcal{H}, n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

Observation:

• Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction.

$$\bullet \ T \xrightarrow{\text{isometric dil.}} V^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix} \xrightarrow{\text{unitary dil.}} U^n = \begin{bmatrix} V^n & * \\ * & * \end{bmatrix} = \begin{bmatrix} T^n & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

Theorem: Every isometry $V \in \mathcal{B}(\mathcal{H})$ has a unitary dilation (\mathcal{K}, U) which is minimal in the sense that $\mathcal{K} = \overline{\text{span}}\{U^nh: h \in \mathcal{H}, n \in \mathbb{Z}\}.$

Proof:

• Use "Wold decomposition".

Observation:

- Suppose $T \in \mathcal{B}(\mathcal{H})$ is a contraction.
- $\bullet \ T \xrightarrow{\text{isometric dil.}} V^n = \begin{bmatrix} T^n & * \\ * & * \end{bmatrix} \xrightarrow{\text{unitary dil.}} U^n = \begin{bmatrix} V^n & * \\ * & * \end{bmatrix} = \begin{bmatrix} T^n & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$

Corollary: Every contraction on a Hilbert space has a minimal unitary dilation.

• Unitary dilation of two contractions?

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

• Unitary dilation of three commuting contractions? Not possible !!!

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

- Unitary dilation of three commuting contractions? Not possible !!!
- But commuting family of isometries $\{V_1, \cdots, V_n\}$ has commuting unitary dilation:

$$U_1^{m_1}\cdots U_n^{m_n} = \begin{bmatrix} V_1^{m_1}\cdots V_n^{m_n} & * \\ * & * \end{bmatrix}.$$

Dilation of noncommuting family of opeartors?

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

- Unitary dilation of three commuting contractions? Not possible !!!
- But commuting family of isometries $\{V_1, \cdots, V_n\}$ has commuting unitary dilation:

$$U_1^{m_1} \cdots U_n^{m_n} = \begin{bmatrix} V_1^{m_1} \cdots V_n^{m_n} & * \\ * & * \end{bmatrix}.$$

 Dilation of noncommuting family of opeartors? Possible for "raw contractions".

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

- Unitary dilation of three commuting contractions? Not possible !!!
- But commuting family of isometries $\{V_1, \cdots, V_n\}$ has commuting unitary dilation:

$$U_1^{m_1} \cdots U_n^{m_n} = \begin{bmatrix} V_1^{m_1} \cdots V_n^{m_n} & * \\ * & * \end{bmatrix}.$$

- Dilation of noncommuting family of opeartors? Possible for "raw contractions".
- Dilation of a family (semigroup) of operators/maps?

• Unitary dilation of two contractions? Requires commutating contractions. There exists commuting unitary dilation:

$$U_1^n U_2^m = \begin{bmatrix} T_1^n T_2^m & * \\ * & * \end{bmatrix} \qquad \forall \quad n, m \ge 0.$$

- Unitary dilation of three commuting contractions? Not possible !!!
- But commuting family of isometries $\{V_1, \cdots, V_n\}$ has commuting unitary dilation:

$$U_1^{m_1} \cdots U_n^{m_n} = \begin{bmatrix} V_1^{m_1} \cdots V_n^{m_n} & * \\ * & * \end{bmatrix}.$$

- Dilation of noncommuting family of opeartors? Possible for "raw contractions".
- Dilation of a family (semigroup) of operators/maps?
- ullet There are lots of questions, answers & problems...

References

K. R. PARTHASARATHY. An introduction to quantum stochastic calculus.

Sz.-NAGY AND C. FOIAS. Harmonic analysis of operators on Hilbert space.

TIRTHANKAR BHATTACHARYYA. Dilation of contractive tuples: a survey.

THANK YOU