1 Introduction

Let \mathbb{K} denote either \mathbb{R} or \mathbb{C} depending on the context in which the discussion takes place, and X be a finite dimensional vector space over \mathbb{K}. Let $A : X \to X$ be a linear operator. Recall that $\lambda \in \mathbb{K}$ is an eigenvalue of A if there exists a non zero $x \in X$ such that

$$Ax = \lambda x,$$

and in that case x is called an eigenvector of A corresponding to the eigenvalue λ.

It is well known that if $\mathbb{K} = \mathbb{C}$, then every $A : X \to X$ has at least one eigenvalue. This fact is normally proved in matrix theory and linear algebra using the concept of determinants. A determinant-free proof of this result is given in ([1], Chapter1) (see also, [2]). However, if $\mathbb{K} = \mathbb{R}$, then a matrix A need not have any eigenvalue. For instance, if $X = \mathbb{R}^n := \mathbb{R}^{n \times 1}$ and

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

then A has no eigenvalues at all. To see this observe that if $\lambda \in \mathbb{R}$ and $x = [x_1, x_2]^T$ satisfy

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \lambda x_2 \end{bmatrix}$$

1
then \(x_2 = \lambda x_1, \) \(-x_1 = \lambda x_2 \) so that \((1 + \lambda^2)x_2 = 0 \) and \(-x_1 = \lambda x_2 \). Thus, we arrive at the conclusion that \(x_2 = 0 \) and \(x_1 = 0 \). Thus, there is no \(\lambda \in \mathbb{R} \) and a nonzero \(x \in \mathbb{R}^2 \) such that \(Ax = \lambda x \).

We may observe that for matrices of the form

\[
\begin{bmatrix}
a & b \\
b & d \\
\end{bmatrix}
\]

do have eigenvalues. Obviously, if \(b = 0 \), then \(a \) and \(d \) are eigenvalues. So, suppose \(b \neq 0 \), and \(\lambda \in \mathbb{R} \) and \(x = [x_1, x_2]^T \) satisfy

\[
\begin{bmatrix}
a & b \\
b & d \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
= \begin{bmatrix}
\lambda x_1 \\
\lambda x_2 \\
\end{bmatrix}.
\]

Then we have

\[
(a - \lambda)x_1 + bx_2 = 0
\]

\[
 bx_1 + (d - \lambda)x_2) = 0.
\]

From these equations it follows that

\[
x_2 = (\frac{\lambda - a}{b})x_1, \quad x_1 = (\frac{d - \lambda}{b})x_2
\]

so that

\[
x_2 = \frac{(\lambda - a)(\lambda - d)}{b^2}x_2.
\]

Note that

\[
\lambda_1 := \frac{1}{2}[(a + d) + \sqrt{(a - d)^2 + 4b^2}], \quad \lambda_2 := \frac{1}{2}[(a + d) - \sqrt{(a - d)^2 + 4b^2}]
\]

satisfy the equation

\[
\frac{(\lambda - a)(\lambda - d)}{b^2} = 1
\]

so that taking \(x_2 = 1 \) and

\[
x_1^{(1)} = (\frac{d - \lambda_1}{b}), \quad x_1^{(2)} = (\frac{d - \lambda_2}{b})
\]

we see that \(\lambda_1 \) and \(\lambda_2 \) are the eigenvalues of

\[
\begin{bmatrix}
a & b \\
b & d \\
\end{bmatrix}
\]

with corresponding eigenvectors

\[
\begin{bmatrix}
x_1^{(1)} \\
x_2 \\
\end{bmatrix}
\text{ and } \begin{bmatrix}
x_1^{(2)} \\
x_2 \\
\end{bmatrix}
\]

respectively.
The above situation is not an accident. In fact, if $K = R$ and A is a symmetric matrix then A has eigenvalues. More generally, if K is R or C, and A is a hermitian matrix, i.e., if $A^* = A$ (where A^* denotes the conjugate transpose of A), then A has eigenvalues. In this note we prove, using a determinant free, seemingly elementary argument, that if A is a self adjoint linear operator on a finite dimensional inner product space over K, then A has at least one eigenvalue. The proof is along similar lines as for the case $K = C$ as in [2], but using the fact that A is self adjoint at some point. Using this result we give a proof for the spectral theorem as well, which results in diagonalization of Hermitian matrices. A consequence of spectral representation of self adjoint operators is the singular value representation of any operator $A : X \rightarrow Y$ between finite dimensional inner product spaces A and Y.

2 Existence of Eigenvalues

Suppose X is an n-dimensional inner product space over K and $A : X \rightarrow X$ is a self adjoint operator, that is A is a linear operator satisfying

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

for every $x, y \in X$. We already know that if $K = C$ then A has an eigenvalue. Since A is self-adjoint, it follows that every eigenvalue of A has to be real. Indeed, if A is self-adjoint and $\lambda \in C$, $x \in X$ such that $Ax = \lambda x$, then

$$\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle Ax, x \rangle = \langle x, Ax \rangle = \langle x, \lambda x \rangle = \bar{\lambda} \langle x, x \rangle,$$

so that either $x = 0$ or else $\lambda \in R$. So it is enough to consider the case of $K = R$.

THEOREM 2.1. Suppose $K = R$ and $A : X \rightarrow X$ be a self adjoint operator. Then A has an eigenvalue.

Proof. Let x be a nonzero element in X. Since $\text{dim } X = n$, the set $\{x, Ax, A^2x, \ldots, A^n x\}$ is linearly dependent. Let a_0, a_1, \ldots, a_n be real numbers with at least one of them being nonzero such that

$$a_0 x + a_1 Ax + \cdots + a_n A^n x = 0.$$
Let \(k = \max \{ j : a_j \neq 0, j = 1, \ldots, n \} \). Then writing
\[
p(t) = a_0 + a_1 t + \cdots + a_k t^k,
p(A) = a_0 I + a_1 A + \cdots + a_k A^k,
\]
we have
\[
p(A)(x) = 0.
\]
By fundamental theorem of algebra, the polynomial \(p(z) \) has \(n \) zeroes in \(\mathbb{C} \). Also we know that if \(\lambda \) is non-real zero of \(p(z) \), then \(\bar{\lambda} \) is also a zero of \(p(z) \). Suppose \(\lambda_1, \ldots, \lambda_r, \bar{\lambda}_1, \ldots, \bar{\lambda}_r \) are the non-real zeroes of \(p(z) \), and \(\mu_1, \ldots, \mu_s \) are the real zeros of \(p(z) \). Then we have
\[
p(z) = a_k \prod_{j=1}^{r} (z - \lambda_j)(z - \bar{\lambda}_j) \prod_{\ell=1}^{s} (z - \mu_\ell).
\]
If \(\lambda_j = \alpha_j + i\beta_j \) with \(\alpha_j, \beta_j \in \mathbb{R} \), then we see that \((z - \lambda_j)(z - \bar{\lambda}_j) = (z - \alpha_j)^2 + \beta_j^2 \).
Hence
\[
p(z) = a_k \prod_{j=1}^{r} [(z - \alpha_j)^2 + \beta_j^2] \prod_{\ell=1}^{s} (z - \mu_\ell).
\]
Thus we have
\[
\prod_{j=1}^{r} [(A - \alpha_j I)^2 + \beta_j^2 I] \prod_{\ell=1}^{s} (A - \mu_\ell I)x = 0.
\]
This shows that either \((A - \mu_\ell I)x = 0 \) for some some \(\ell \) or \([(A - \alpha_j I)^2 + \beta_j^2 I]x = 0 \) for some \(j \). In the first case \(\mu_\ell \) is an eigenvalue. In the latter case, we have
\[
\langle [(A - \alpha_j I)^2 + \beta_j^2 I]x, x \rangle = 0
\]
so that
\[
\langle (A - \alpha_j I)^2 x, x \rangle + \beta_j^2 \langle x, x \rangle = 0.
\]
Since \(\langle (A - \alpha_j I)^2 x, x \rangle = \langle (A - \alpha_j I) x, (A - \alpha_j I)x \rangle = \| (A - \alpha_j I)x \| \geq 0 \), it follows that
\[
\| (A - \alpha_j I)x \| = \langle (A - \alpha_j I)^2 x, x \rangle = 0, \quad \beta_j^2 \| x \| = \beta_j^2 \langle x, x \rangle = 0.
\]
Hence \(\beta_j = 0 \) and \(\alpha_j \) is an eigenvalue of \(A \). \(\square \)

3 Spectral Theorem

Now we prove the spectral theorem for a self adjoint operator on a finite dimensional inner product space.
THEOREM 3.1. Suppose \(A : X \to X \) is a self adjoint operator on a finite dimensional inner product space \(X \). Then there exists an orthonormal basis for \(X \) consisting of eigenvectors of \(A \).

Proof. Our argument is based on induction on the dimension of the space \(X \). The result is obvious if \(\dim(X) = 1 \). Assume that the result is true for spaces of dimension \(n - 1 \) for \(n \geq 2 \). We prove for the case of \(\dim(X) = n \). By Theorem 2.1 we know that \(A \) has an eigenvalue. Let \(\lambda \in \mathbb{K} \) be an eigenvalue of \(A \). Let \(N_\lambda = N(A - \lambda I) \), and let \(\{u_1, \ldots, u_k\} \) be an orthonormal basis of \(N_\lambda \). In case \(N_\lambda = X \) then any orthonormal basis of \(N_\lambda \) would serve the purpose. Suppose \(N_\lambda \neq X \). Then we observe that

\[
X = N_\lambda + N_\lambda^\perp,
\]

and both the spaces \(N_\lambda \) and \(N_\lambda^\perp \) are invariant under \(A \). Indeed, if \(x \in N_\lambda \), then \((A - \lambda I)Ax = A(A - \lambda I)x = 0 \) so that \(Ax \in N_\lambda \). If \(x \in N_\lambda^\perp \), then for every \(y \in N_\lambda \), \(Ay \in N_\lambda \) so that \(\langle Ax, y \rangle = \langle x, Ay \rangle = 0 \) so that \(Ax \in N_\lambda^\perp \). Let \(B : N_\lambda^\perp \to N_\lambda^\perp \) be defined by \(Bx = Ax, x \in N_\lambda^\perp \). It follows easily that \(B \) is a self adjoint operator on \(N_\lambda^\perp \). Since \(\dim(N_\lambda^\perp) = n - k < n \), by induction assumption, \(N_\lambda^\perp \) has an orthonormal basis \(\{v_1, \ldots, v_{n-k}\} \) consisting of eigenvectors of \(B \). Since every eigenvector of \(B \) is an eigenvector of \(A \) as well, \(\{u_1, \ldots, u_k, v_1, \ldots, v_{n-k}\} \) is a basis of \(X \) consisting of eigenvectors of \(A \).

From the above theorem, we derive the following:

THEOREM 3.2. Suppose \(A : X \to X \) is a self adjoint operator on a finite dimensional inner product space \(X \). Then there exists an orthonormal basis \(\{u_1, \ldots, u_n\} \) for \(X \) and \(\lambda_1, \ldots, \lambda_n \) be in \(\mathbb{K} \) such that

\[
Ax = \sum_{j=1}^{n} \lambda_j \langle x, u_j \rangle u_j \quad \forall x \in X.
\]

Proof. By Theorem 3.1, there exists an orthonormal basis \(\{u_1, \ldots, u_n\} \) for \(X \) consisting of eigenvector of \(A \). Let \(\lambda_1, \ldots, \lambda_n \) be in \(\mathbb{K} \) be the corresponding eigenvalues, i.e., \(Au_j = \lambda_j u_j \), \(j \in \{1, \ldots, n\} \). Now for any \(x \in X \),

\[
x = \sum_{j=1}^{n} \langle x, u_j \rangle u_j
\]
so that
\[Ax = \sum_{j=1}^{n} \langle x, u_j \rangle Au_j = \sum_{j=1}^{n} \langle x, u_j \rangle \lambda_j u_j = \sum_{j=1}^{n} \lambda_j \langle x, u_i \rangle u_j. \]

This completes the proof. \(\square \)

3.1 Diagonalization

Suppose \(X \) is a finite dimensional vector space with a basis \(E = \{v_1, \ldots, v_n\} \). Then it is easily seen that the map

\[J : x := \sum_{j=1}^{n} \alpha_j v_j \mapsto Jx := (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{K}^n \]

is a bijective linear operator. This linear isomorphism \(J \) naturally induces a bijection between the set \(\mathcal{L}(X) \) of all linear operators on \(X \) and the set \(\mathcal{M}(n, \mathbb{K}) \) of all \(n \times n \) matrices, namely,

\[A \mapsto [A]_E := JAJ^{-1}, \quad A \in \mathcal{L}(X). \]

A linear operator \(A : X \to X \) is said to be diagonalizable if there exists a basis \(E = \{v_1, \ldots, v_n\} \) for \(X \) such that \([A]_E\) is a diagonal matrix. The following theorem is an immediate consequence of Theorem 3.1. Recall that a matrix \(A \) is called a Hermitian matrix if it is the conjugate transpose of itself.

THEOREM 3.3. Every self adjoint operator on a finite dimensional inner product space is diagonalizable.

As a special case suppose \(X = \mathbb{K}^n \) and \(A \in \mathcal{M}(n, \mathbb{K}) \) is a Hermitian matrix. Let \(\{u_1, \ldots, u_n\} \) and \(\lambda_1, \ldots, \lambda_n \) be as in Theorem 3.2. Let \(U = [u_1, \ldots, u_n] \), the matrix with columns as \(u_1, \ldots, u_n \), and let \(\Lambda \) be the diagonal matrix with diagonal entries \(\lambda_1, \ldots, \lambda_n \). Since

\[Au_j = \lambda_j u_j, \quad j = 1 \ldots, n, \]

we have

\[AU = U\Lambda. \]

Note that \(U^*U = I \), i.e., \(U \) is a unitary operator. Thus, we have

\[A = U\Lambda U^*. \]
Conversely, if \(U \) is a unitary matrix such that \(A = U \Lambda U^* \) for some diagonal matrix, then \(A \) is diagonalizable.

As a corollary to the last result we have the following.

COROLLARY 3.4. Suppose \(A \) is a self adjoint operator and \(\lambda_1, \ldots, \lambda_n \) are its eigenvalues. Then

\[
\|A\| = \max\{|\lambda_j| : j = 1, \ldots, n\}.
\]

Proof. We recall that \(\|A\| = \sup\{\|Ax\| : \|x\| = 1\} \). By Theorem 3.2, we have

\[
Ax = \sum_{j=1}^{n} \lambda_j \langle x, u_i \rangle u_j
\]

where \(\{u_1, \ldots, u_n\} \) is an orthonormal basis of \(X \) and \(\lambda_1, \ldots, \lambda_n \) are eigenvalues of \(A \). Hence

\[
\|Ax\|^2 = \sum_{j=1}^{n} |\lambda_j|^2 |\langle x, u_i \rangle|^2 \leq \left(\max_{1 \leq j \leq n} |\lambda_j| \right)^2 \|x\|^2
\]

so that \(\|A\| \leq \max_{1 \leq j \leq n} |\lambda_j| \). Since \(|\lambda_j| = \|\lambda_j u_j\| = \|Au_j\| \leq \|A\| \) for every \(j = 1, \ldots, n \), we have \(\max_{1 \leq j \leq n} |\lambda_j| \leq \|A\| \). Thus \(\|A\| = \max_{1 \leq j \leq n} |\lambda_j| \).

\[
\boxdot
\]

4 Singular Value Representation

using Theorem 3.2 we can obtain a representation for any linear operator \(A : X \to Y \) between finite dimensional inner product spaces \(X \) and \(Y \).

Suppose \(A : X \to Y \) is a linear operator between finite dimensional inner product spaces. Then \(A^*A : X \to X \) is a self adjoint operator. Hence, by Theorem 3.2, \(A^*A \) can be represented as

\[
A^*Ax = \sum_{j=1}^{n} \lambda_j \langle x, u_i \rangle u_j
\]

where \(\lambda_1, \ldots, \lambda_n \) are eigenvalues of \(A^*A \) and \(u_1, \ldots, u_n \) are corresponding eigenvectors which form an orthonormal basis for \(X \). Note that \(\lambda_j \geq 0 \) for every \(j = 1, \ldots, n \), since

\[
0 \leq \|Au_j\|^2 = \langle Au_j, Au_j \rangle = \langle A^*Au_j, u_j \rangle = \langle \lambda_j u_j, u_j \rangle = \lambda_j.
\]
Let σ_j be the positive square root of λ_j. We assume, without loss of generality, that $\sigma_1 \geq \sigma_2 \geq \sigma_n \geq 0$. Let k be such that $\sigma_k \neq 0$ and $\sigma_j = 0$ for $j > k$, and let $v_j := \frac{Au_j}{\sigma_j}$ for $j = 1, \ldots, k$. Note that $u_j \in N(A^*A) = N(A)$ for $j > k$, and

$$Au_j = \sigma_j v_j, \quad A^* v_j = \sigma_j u_j, \quad j = 1, \ldots, k.$$

Then for every $x \in X$, we have

$$Ax = A \left(\sum_{j=1}^{k} \langle x, u_j \rangle u_j \right) = \sum_{j=1}^{n} \langle x, u_j \rangle Au_j = \sum_{j=1}^{k} \langle x, u_j \rangle Au_j = \sum_{j=1}^{k} \sigma_j \langle x, u_j \rangle v_j.$$

We may also observe that $\{u_1, \ldots, u_k\}$ is an orthonormal basis of $N(A)^\perp$ and $\{v_1, \ldots, v_k\}$ is an orthonormal basis of $R(A)$. Thus we have proved the following theorem.

Theorem 4.1. Let $A : X \to Y$ be a linear operator between finite dimensional inner product spaces. Then there exist positive real numbers $\sigma_1, \ldots, \sigma_k$ and orthonormal bases $\{u_1, \ldots, u_k\}$ for $N(A)^\perp$ and $\{v_1, \ldots, v_k\}$ for $R(A)$ such that

$$Ax = \sum_{j=1}^{k} \sigma_j \langle x, u_j \rangle v_j.$$

The numbers $\sigma_1, \ldots, \sigma_k$ are called the **singular values** of A, and u_j and v_j are called the right and left **singular vectors** of A corresponding to the singular value σ_j for $j = 1, \ldots, k$.

If $X = \mathbb{K}^n$ and $Y = \mathbb{K}^m$ and $A \in \mathbb{K}^{m \times n}$, then the singular value representation of A can be written as

$$Ax = \sum_{j=1}^{k} \sigma_j v_j u_j^* x, \quad x \in \mathbb{K}^n$$

so that

$$Ax = [v_1, v_2, \ldots, v_k] \text{diag}(\sigma_1, \ldots, \sigma_k) [u_1, u_2, \ldots, u_k]^* x.$$

Thus,

$$A = V D U^*,$$

where

$$U = [u_1, u_2, \ldots, u_k], \quad U = [v_1, v_2, \ldots, v_k], \quad D = \text{diag}(\sigma_1, \ldots, \sigma_k).$$
References
