Spectral Mapping Theorem for Self Adjoint Operators

M.T.Nair
Department of Mathematics, IIT Madras

THEOREM 1. Let $A \in B(X)$ be a self-adjoint operator on a Hilbert space X and $p(t)$ be a polynomial with coefficients in \mathbb{F}. Then,

$$\sigma(p(A)) = \{ p(\lambda) : \lambda \in \sigma(A) \}.$$

Proof. By Theorem 10.14 in [1],

$$\{ p(\lambda) : \lambda \in \sigma(A) \} \subseteq \sigma(p(A)),$$

and for $\mathbb{F} = \mathbb{C}$, we have the equality

$$\{ p(\lambda) : \lambda \in \sigma(A) \} = \sigma(p(A)).$$

Hence, we need to prove

$$\sigma(p(A)) \subseteq \{ p(\lambda) : \lambda \in \sigma(A) \}$$

for the case $\mathbb{F} = \mathbb{R}$. So, let $p(t)$ be a polynomial with real coefficients. The result is obvious if $p(t)$ is a constant polynomial. Hence, assume that $p(t)$ is not constant. Let $\mu \in \sigma(p(A))$. We observe that, since A is self adjoint and since coefficients of $p(t)$ are real numbers, $p(A)$ is also a self adjoint operator. Hence $\mu \in \mathbb{R}$. We consider two cases, namely,

Case(i): $p(t) - \mu$ does not have any non-real complex zeros, and

Case(ii): $p(t) - \mu$ has at least one non-real complex zero.

Case(i): In this case, there are (not necessarily distinct) real numbers c,t_1,\ldots,t_k such that

$$p(t) - \mu = c \prod_{j=1}^{k} (t - t_j).$$

Then

$$p(A) - \mu I = c \prod_{j=1}^{k} (A - t_jI).$$

Since $p(A) - \mu I$ is not invertible, there exists $\ell \in \{1,\ldots,k\}$ such that $A - t_\ell I$ is not invertible. Thus, $\lambda := t_\ell$ is a spectral value of A, and $p(\lambda) = \mu$.

Case(ii): Suppose λ is a non-real complex zero of $p(t) - \mu$. Since coefficients of $p(t) - \mu$ are real numbers, λ is also a zero of $p(t) - \mu$. Hence, $(t - \lambda)(t - \bar{\lambda})$ is a factor of $p(t) - \mu$. Thus, $p(t) - \mu$ has

1A slight modified form of the proof given in [1], Theorem 12.12, Page 386.
the representation

\[p(t) - \mu = q(t) \prod_{j=1}^{m} (t - \lambda_j I)(t - \bar{\lambda}_j I), \]

where \(\lambda_1, \ldots, \lambda_m \) are non-real (not necessarily distinct) complex numbers and \(q(t) \) is a polynomial with real coefficients having no non-real zeros. Writing \(\lambda_j = \alpha_j + i\beta_j \) with \(\alpha_j, \beta_j \in \mathbb{R} \) and \(\beta_j \neq 0 \) and observing that

\[(t - \lambda_j)(t - \bar{\lambda}_j) = [(t - \alpha_j) - i\beta_j][(t - \alpha_j) + i\beta_j] = (t - \alpha_j)^2 + \beta_j^2, \]

we have

\[p(t) - \mu = q(t) \prod_{j=1}^{m} [(t - \alpha_j)^2 + \beta_j^2]. \]

Hence,

\[p(A) - \mu I = q(A) \prod_{j=1}^{m} [(A - \alpha_j I)^2 + \beta_j^2 I]. \]

Since each \((A - \alpha_j I)^2 \) is a positive operator, \((A - \alpha_j I)^2 + \beta_j^2 I \) is invertible for every \(j \in \{1, \ldots, m\} \). Hence, \(q(A) \) is not invertible. Therefore, \(q(t) \) is a non-constant polynomial and \(q(t) \) is of the form

\[q(t) = c \prod_{j=1}^{k} (t - t_j), \]

for some real numbers \(c, t_1, \ldots, t_k \). Consequently, we have

\[p(A) - \mu I = c \prod_{j=1}^{k} (A - t_j I) \prod_{j=1}^{m} [(A - \alpha_j I)^2 + \beta_j^2 I]. \]

From this it follows, as in case (i), that there exists \(\ell \in \{1, \ldots, k\} \) such that \(A - t_\ell I \) is not invertible. Thus, \(\lambda := t_\ell \) is a spectral value of \(A \), and \(p(\lambda) = \mu \).

\[\square \]

References