Formal Language Theory

Problem Sheet 1

1. Find Regular Grammars for the following languages on \(\{a, b\} \)
 (a) \(L = \{ w : n_a(w) \text{ and } n_b(w) \text{ are both even} \} \).
 (b) \(L = \{ w : (n_a(w) - n_b(w)) \mod 3 = 1 \} \).
 (c) \(L = \{ w : (n_a(w) - n_b(w)) \mod 3 \neq 0 \} \).

2. Find a regular grammar that generates the set of all Pascal real numbers.

3. Find the minimal DFA for the following languages
 (a) \(L = \{ a^n b^m : n \geq 2, m \geq 1 \} \).
 (b) \(L = \{ a^n b^m : n \geq 0 \} \cup \{ b^n a : n \geq 1 \} \).
 (c) \(L = \{ a^n : n \geq 0, n \neq 3 \} \).

4. Find regular expression for the set \(\{ a^n b^m : (n + m) \text{ is even} \} \).

5. Give a regular expression for the following languages:
 (a) \(L = \{ a^n b^m : n \geq 4, m \leq 3 \} \).
 (b) \(L = \{ a^n b^m : n \geq 1, m \geq 1, nm \geq 3 \} \).
 (c) \(L = \{ ab^n w : n \geq 3, w \in \{a, b\}^+ \} \).
 (d) \(L = \{ w \in \{0, 1\}^* : w \text{ has exactly one pair of consecutive zeros} \} \).
 (e) \(L = \{ w \in \{0, 1\}^+ : w \text{ ends with 01} \} \).
 (f) \(L = \{ w \in \{0, 1\}^+ : |w|_0 \text{ is even} \} \).

6. Prove the following:
 (a) \((r_1^*)^* \equiv r_1^* \).
 (b) \(r_1^* (r_1 + r_2)^* \equiv (r_1 + r_2)^* \).
 (c) \((r_1 + r_2)^* \equiv (r_1^* r_2^*)^* \).
 for all regular expression \(r_1 \) and \(r_2 \). Here \(\equiv \) stands for equivalence in the sense of the language generated.

7. Find an NFA that accepts the language \(L(aa^*(a + b)) \).

8. Find DFA that accepts the following languages:
 (a) \(L(aa^* + aba^*b^*) \).
 (b) \(L(ab(a + ab)^* + (a + aa)) \).
 (c) \(L((aab)^* + (aaa^* + b)^*) \).
 (d) \(L(((aa^*)^*b)^*) \).

9. Construct a DFA that accepts the language generated by the grammar

\[
S \rightarrow abA \\
A \rightarrow baB \\
B \rightarrow aA/bb
\]
10. Construct right and left linear grammars for the following language:

\[L = \{a^n b^m : n \geq 2, m \geq 3\} \]

11. Construct a right linear grammar for the following language:

\[L((aab^*ab)^*) \]