Numerical Methods for Partial Differential Equations using Radial Basis Functions

Chandhini.G
Department of Mathematics

chandhini@iitm.ac.in
OUTLINE

• Gridfree methods

• Radial Basis Function (RBF) Interpolation

• Collocation using RBFs

• Preconditioning

• Finite difference type formulation using RBFs
Gridfree methods for solving PDEs

• Gridfree methods and their importance
• Multivariate Interpolation (scattered data) in \mathbb{R}^d, $d > 1$

$$s(\bar{x}) = \sum_{j=1}^{n} \lambda_j B_j(\bar{x})$$

– Different methods - their drawbacks

– Radial Basis Functions
In one dimension, data can be interpolated smoothly using splines.

 Doesn't matter if nodes are scattered rather than equispaced.
On a regular 2-D grid, data can be interpolated smoothly by splines.

On scattered nodes, smooth splines are difficult.
A radial basis function interpolant can be smooth and accurate on any set of nodes in any dimension.
RBF - As an Interpolation Tool

Definition Let $X \subseteq \mathbb{R}^d$, $d \geq 1$ be a normed linear space. A function $\psi : X \rightarrow \mathbb{R}$ is said to be radial if there exists a univariate function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}$ such that $\psi(\bar{x}) = \phi(\|\bar{x}\|)$ for all $\bar{x} \in X$. A radial basis function is any translates of ϕ, i.e, a function of the form $\psi(\bar{x} - \bar{\xi}) = \phi(\|\bar{x} - \bar{\xi}\|)$, where $\bar{\xi}$ is any prescribed point of X.

$\|\cdot\|$, some norm in $X \subseteq \mathbb{R}^d$ - usually Euclidean norm.
Examples: \((\phi(r), r \geq 0) \)

1. Infinitely Smooth Radial Functions (feature a shape parameter \(c \neq 0 \))

 Gaussian (\(e^{-(r/c)^2} \))

 Multiquadric (\(\sqrt{c^2 + r^2} \))

 Inverse Multiquadric (\(\frac{1}{\sqrt{c^2 + r^2}} \))
Examples: \((\phi(r), r \geq 0)\)

1. Infinitely Smooth Radial Functions (feature a shape parameter \(c \neq 0\))

 Gaussian \((e^{-(r/c)^2})\)

 Multiquadric \((\sqrt{c^2 + r^2})\)

 Inverse Multiquadric \((\frac{1}{\sqrt{c^2+r^2}})\)

2. Piecewise Smooth Radial Functions

 Linear \((r)\)

 Cubic \((r^3)\)

 Thin plate Splines \((r^2\log(r))\)
Definition Given a set of n distinct data $(\bar{x}_i, f_i)_{i=1}^n$, where $\bar{x}_i \in \mathbb{R}^d$, $d \geq 1$, the RBF interpolant is given by,

$$s(x) = \sum_{j=1}^n \lambda_j \phi(\| \bar{x} - \bar{x}_j \|)$$ \hspace{1cm} (1)

Applying interpolation condition,

$$s(x_i) = f_i, \; i = 1, \ldots n$$ \hspace{1cm} (2)

leads to the following linear system, \hspace{1cm} $A\lambda = \bar{f}$

where $A_{i,j} = \phi(\| \bar{x}_i - \bar{x}_j \|)$
Uniqueness - nonsingularity of A

Definition A real-valued function ϕ is **positive definite** on \mathbb{R}^d if and only if it satisfies

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k \phi(\bar{x}_j - \bar{x}_k) > 0$$

for any n distinct points $\bar{x}_1, \ldots, \bar{x}_n \in \mathbb{R}^d$ and $\alpha = [\alpha_1, \ldots, \alpha_n]^T \neq 0$
Uniqueness - nonsingularity of A

Definition A real-valued function ϕ is **positive definite** on \mathbb{R}^d if and only if it satisfies

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k \phi(\bar{x}_j - \bar{x}_k) > 0
$$

for any n distinct points $\bar{x}_1, \ldots, \bar{x}_n \in \mathbb{R}^d$ and $\alpha = [\alpha_1, \ldots, \alpha_n]^T \neq 0$

Definition A function ϕ is said to be **completely monotone** on $[0, \infty)$ if,

1. $\phi \in C[0, \infty) \cap C^\infty(0, \infty)$

2. $(-1)^k \phi^{(k)}(r) \geq 0, \ r > 0, \ k = 0, 1, 2, \ldots$
Theorem (Schoenberg(1938)):

If $\phi : [0, \infty) \to \mathbb{R}$ is a non-constant completely monotone function, then $\phi(\|\cdot\|^2)$ is positive definite and radial on \mathbb{R}^d, $d \geq 1$.

Examples: Gaussian, Inverse MQ (But not MQ or TPS).
Theorem (Schoenberg(1938)):

If \(\phi : [0, \infty) \rightarrow \mathbb{R} \) is a non-constant completely monotone function, then \(\phi(\| \cdot \|_2^2) \) is positive definite and radial on \(\mathbb{R}^d, \ d \geq 1 \).

Examples: Gaussian, Inverse MQ (But not MQ or TPS).

Augmented RBF Method

Interpolant is of the form,

\[
s(x) = \sum_{j=1}^{n} \lambda_j \phi(\| \bar{x} - \bar{x}_j \|) + \sum_{k=1}^{M} \gamma_k p_k(\bar{x}), \ x \in \mathbb{R}^d
\]

(3)

where \(p_1, \ldots, p_M \) form a basis for the space \(\prod_{m-1}^{d} \) (polynomials of degree \(\leq m - 1 \) in \(d \) variables).
Definition A real valued continuous function ϕ is called **conditionally positive definite** of order m on \mathbb{R}^d, if,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k \phi(x_j - x_k) > 0$$
Definition A real valued continuous function ϕ is called **conditionally positive definite** of order m on \mathbb{R}^d, if,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k \phi(\bar{x}_j - \bar{x}_k) > 0$$

for any $\bar{x}_1, \ldots, \bar{x}_n \in \mathbb{R}^d$ and $\alpha = [\alpha_1, \ldots, \alpha_n]^T \neq 0$ satisfying

$$\sum_{j=1}^{n} \alpha_j \bar{x}_j^\nu = 0, \quad |\nu| = \sum_{i=1}^{d} \nu_i < m, \quad \bar{x}^\nu = x_1^{\nu_1} x_2^{\nu_2} \ldots x_n^{\nu_n}$$
Definition A real valued continuous function \(\phi \) is called conditionally positive definite of order \(m \) on \(\mathbb{R}^d \), if,

\[
\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k \phi(\bar{x}_j - \bar{x}_k) > 0
\]

for any \(\bar{x}_1, \ldots, \bar{x}_n \in \mathbb{R}^d \) and \(\alpha = [\alpha_1, \ldots, \alpha_n]^T \neq 0 \) satisfying

\[
\sum_{j=1}^{n} \alpha_j \bar{x}_j^\nu = 0, \quad |\nu| = \sum_{i=1}^{d} \nu_i < m, \quad \bar{x}^\nu = x_1^{\nu_1}x_2^{\nu_2} \ldots x_n^{\nu_n}
\]

Examples: MQ - conditionally p.d of order 1

TPS - conditionally p.d of order 2
To accommodate extra degrees of freedom, enforce,

\[
\sum_{j=1}^{n} \lambda_j p_l(\bar{x}_j) = 0, \ l = 1, \ldots, M \tag{4}
\]

leads to,

\[
\begin{pmatrix}
A & P \\
P^T & 0
\end{pmatrix}
\begin{pmatrix}
\lambda \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
f \\
0
\end{pmatrix} \tag{5}
\]
To accommodate extra degrees of freedom, enforce,

$$\sum_{j=1}^{n} \lambda_j p_l(\bar{x}_j) = 0, \ l = 1, \ldots, M$$

leads to,

$$\begin{pmatrix} A & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ \gamma \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

Theorem (Michelli-1986) The real valued function ϕ is conditionally p.d of order m on \mathbb{R}^d and the points $\{\bar{x}_1, \ldots, \bar{x}_n\}$ are such that $\text{Rank}(P) = M$, then the linear system in the augmented RBF interpolation is nonsingular.
Accuracy of the Interpolant and Stability of the System

Infinitely Smooth RBFs:

1. depends on number of data and the shape parameter c
 - can improve the accuracy by increasing c significantly
 - but stability is lost by increasing the number of points or by increasing the value of c due to the exponential increase in the condition number of the interpolation matrix

2. for a fixed c, converges exponentially ($O(e^{-\frac{const}{h}})$)
Accuracy of the Interpolant and Stability of the System

Infinitely Smooth RBFs:
1. depends on number of data and the shape parameter c
 • can improve the accuracy by increasing c significantly
 • but stability is lost by increasing the number of points or by increasing the value of c due to the exponential increase in the condition number of the interpolation matrix
2. for a fixed c, converges exponentially ($O\left(e^{-\frac{\text{const}}{h}}\right)$)

Piecewise Smooth RBFs:
1. convergence depends on the smoothness and the space dimension
2. Stability get affected by increase in number of points and also by smoothness
Given data \(\{\bar{x}_i, \mathcal{L}_i f\}, \ i = 1, \ldots, n \), where \(\mathcal{L} = \{\mathcal{L}_1, \ldots, \mathcal{L}_n\} \), are linear differential operators.

\[
s(\bar{x}) = \sum_{j=1}^{n} \lambda_j \mathcal{L}_j^2 \phi(\|\bar{x} - \bar{x}_j\|), \quad \bar{x} \in \mathbb{R}^d
\]

(6)
Hermite RBF Interpolation - Z.Wu (1992)

Given data \(\{ \bar{x}_i, \mathcal{L}_i f \} \), \(i = 1, \ldots, n \), where \(\mathcal{L} = \{ \mathcal{L}_1, \ldots, \mathcal{L}_n \} \), are linear differential operators.

\[
s(\vec{x}) = \sum_{j=1}^{n} \lambda_j \mathcal{L}_j^2 \phi(\|\vec{x} - \bar{x}_j\|), \quad \vec{x} \in \mathbb{R}^d
\] \hspace{1cm} (6)

Apply condition,

\[
\mathcal{L}_i s = \mathcal{L}_i f, \quad i = 1, \ldots, n
\] \hspace{1cm} (7)

Leads to \(A\lambda = \mathcal{L} f \), where \(A_{ij} = \mathcal{L}_i^1 \mathcal{L}_j^2 \phi \)
Hermite RBF Interpolation - Z.Wu (1992)

Given data \(\{\bar{x}_i, L_i f\} \), \(i = 1, \ldots, n \), where \(L = \{L_1, \ldots, L_n\} \), are linear differential operators.

\[
s(\bar{x}) = \sum_{j=1}^{n} \lambda_j L_j^2 \phi(\|\bar{x} - \bar{x}_j\|), \quad \bar{x} \in \mathbb{R}^d
\]

(6)

Apply condition, \(L_i s = L_i f, \quad i = 1, \ldots, n \)

(7)

Leads to \(A \lambda = L f \), where \(A_{ij} = L_i^1 L_j^2 \phi \)

- \(A \) is non-singular for the class of radial functions defined previously.
RBF for solving PDEs
RBF for solving PDEs

• Collocation Methods
RBF for solving PDEs

- Collocation Methods
- Variational Formulations
RBF for solving PDEs

- Collocation Methods
- Variational Formulations
- Boundary Element Methods (Method of fundamental solutions)
Collocation Methods

Consider the boundary value problem,

\[
\begin{align*}
 \mathcal{L}[u](\bar{x}) &= f(\bar{x}), \quad \bar{x} \in \Omega, \\
 \mathcal{B}[u](\bar{x}) &= g(\bar{x}), \quad \bar{x} \in \partial \Omega,
\end{align*}
\]

where \(\mathcal{L} \) and \(\mathcal{B} \) linear partial differential operators in the domain \(\Omega \) and \(\partial \Omega \) respectively.

Given \((\bar{x}_j)_{j=1}^n \), \(n_B \) - boundary nodes

\[n - n_B \] - interior nodes.
Asymmetric Collocation - Kansa (1990)

\[u(\bar{x}) = \sum_{j=1}^{n} \lambda_j \phi(\|\bar{x} - \bar{x}_j\|) \] \hspace{1cm} (9)

Apply the operators \(\mathcal{L} \) and \(\mathcal{B} \) on \(u \) for interior and boundary points respectively,

\[
\begin{pmatrix}
\mathcal{B}_1 \phi \\
\mathcal{L}_1 \phi
\end{pmatrix}
\lambda =
\begin{pmatrix}
g \\
f
\end{pmatrix}
\] \hspace{1cm} (10)
Asymmetric Collocation - Kansa(1990)

\[u(\bar{x}) = \sum_{j=1}^{n} \lambda_j \phi(\|\bar{x} - \bar{x}_j\|) \]

Apply the operators \(\mathcal{L} \) and \(\mathcal{B} \) on \(u \) for interior and boundary points respectively,

\[
\begin{pmatrix}
\mathcal{B}_1\phi \\
\mathcal{L}_1\phi
\end{pmatrix}
\lambda =
\begin{pmatrix}
g \\
f
\end{pmatrix}
\]

– Easy to implement
– linear system is non-symmetric
– no theory has been developed

\[u(\bar{x}) = \sum_{j=1}^{n_B} \lambda_j B_2 \phi(\|\bar{x} - \bar{x}_j\|) + \sum_{j=n_B+1}^{n} \lambda_j L_2 \phi(\|\bar{x} - \bar{x}_j\|) + P_m(\bar{x}) \quad (11) \]

Application of the operators \(\mathcal{L} \) and \(B \) on \(u \) for interior and boundary points respectively, and along with the orthogonality condition, leads to,

\[
\begin{pmatrix}
B_1 B_2 \phi & B_1 L_2 \phi & B_1 P_m \\
L_1 B_2 \phi & L_1 L_2 \phi & L_1 P_m \\
B_1 P_m^T & L_1 P_m^T & 0
\end{pmatrix}
\begin{pmatrix}
\lambda_B \\
\lambda_L \\
\gamma
\end{pmatrix}
= \begin{pmatrix}
g \\
f \\
0
\end{pmatrix} \quad (12)
\]
• Symmetric Collocation - G.E.Fasshauer (1997)

\[
u(\bar{x}) = \sum_{j=1}^{n_B} \lambda_j B_2 \phi(\|\bar{x} - \bar{x}_j\|) + \sum_{j=n_B+1}^{n} \lambda_j L_2 \phi(\|\bar{x} - \bar{x}_j\|) + P_m(\bar{x}) \quad (11)
\]

Application of the operators \(L\) and \(B\) on \(u\) for interior and boundary points respectively, and along with the orthogonality condition, leads to,

\[
\begin{pmatrix}
B_1 B_2 \phi & B_1 L_2 \phi & B_1 P_m \\
L_1 B_2 \phi & L_1 L_2 \phi & L_1 P_m \\
B_1 P_m^T & L_1 P_m^T & 0
\end{pmatrix}
\begin{pmatrix}
\lambda_B \\
\lambda_L \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
g \\
f \\
0
\end{pmatrix}
\quad (12)
\]

– Linear system is symmetric and non-singular
Seminar-1

\[u(\bar{x}) = \sum_{j=1}^{n_B} \lambda_j B_2 \phi(\|\bar{x} - \bar{x}_j\|) + \sum_{j=n_B+1}^{n} \lambda_j L_2 \phi(\|\bar{x} - \bar{x}_j\|) + P_m(\bar{x}) \] \hspace{1cm} (11)

Application of the operators \(L \) and \(B \) on \(u \) for interior and boundary points respectively, and along with the orthogonality condition, leads to,

\[
\begin{pmatrix}
 B_1 B_2 \phi & B_1 L_2 \phi & B_1 P_m \\
 L_1 B_2 \phi & L_1 L_2 \phi & L_1 P_m \\
 B_1 P^T_m & L_1 P^T_m & 0
\end{pmatrix}
\begin{pmatrix}
 \lambda_B \\
 \lambda_L \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 g \\
 f \\
 0
\end{pmatrix}
\] \hspace{1cm} (12)

- Linear system is symmetric and non-singular
- Convergence theory has been developed.
Numerical Examples

Comparison of Multiquadric with finite difference for Steady Convection Diffusion Equation

\[-\nabla^2 u + \bar{b} \cdot \nabla u = f\]

\[BC: c_1 \frac{\partial u}{\partial n} + c_2 u = g\] \hspace{1cm} (13)
Example 1:
For 2-D convection diffusion equation, with $\Omega = (0, 1)^2$ and $\bar{b} = (b_1, b_2)$,
where,

$$b_1 = -16(x - x^2)^2(y - y^2)(1 - 2y)$$
$$b_2 = 16(x - x^2)(1 - 2x)(y - y^2)^2$$

Solution : $u(x, y) = 16[(6x^2 - 6x + 1)(y - y^2) + (x - x^2)(6y^2 - 6y + 1)]$
Analytical solution

Comparison of r.m.s errors

Chandhini.G, Department of Mathematics
Example 2:

For, 2-D convection diffusion equation,

\[\bar{b} = (Re, 0), \quad f(x, y) = 0, \quad 0 < x, y < 1, \]

BCs: \[u(x, 0) = 0, \quad u(x, 1) = 0 \]

\[u(0, y) = \sin \pi y, \quad u(1, y) = 2 \sin \pi y \]
CDS(20X20) solution MQ solution with 258 centers
20x20 uniform grid

Distribution of 258 centers
Comparison of r.m.s error

Chandhini.G, Department of Mathematics
Matrix obtained from RBF interpolation and collocation is, in general, dense and severely ill-conditioned.

Remedy is pre-conditioning(change of basis) and domain decomposition.
Preconditioning

Given system, \[A\lambda = f \]

Preconditioned system, \[WA\lambda = Wf \]
Preconditioning

Given system, \(A\lambda = f \)

Preconditioned system, \(WA\lambda = Wf \)

Approximate Cardinal Basis Function (ACBF) Preconditioner

- Proposed by Beatson, Cherrie and Mouat
Preconditioning

Given system, \[A\lambda = f \]

Preconditioned system, \[WA\lambda = Wf \]

Approximate Cardinal Basis Function (ACBF) Preconditioner

- Proposed by Beatson, Cherrie and Mouat
- Idea is to represent the interpolant in terms of cardinal function.
For each center $\bar{x}_i, \ i = 1, \ldots, n$ cardinal function of the interpolation problem,

$$
\psi_i(\bar{x}) = \sum_{j=1}^{n} \omega_{ij} \phi(\|\bar{x} - \bar{x}_j\|), \ i = 1, \ldots, n
$$

(14)

where $\psi_i(\bar{x}_j) = \delta_{ij}$ for $j = 1, \ldots, n$

$\Rightarrow W = (w_{ij})_{i,j=1}^{n}$ is the inverse of the interpolation matrix.
For each center $\bar{x}_i, \ i = 1, \ldots, n$ cardinal function of the interpolation problem,

$$
\psi_i(\bar{x}) = \sum_{j=1}^{n} \omega_{ij} \phi(||\bar{x} - \bar{x}_j||), \ i = 1, \ldots, n
$$

(14)

where $\psi_i(\bar{x}_j) = \delta_{ij}$ for $j = 1, \ldots, n$

$\Rightarrow W = (w_{ij})_{i,j=1}^{n}$ is the inverse of the interpolation matrix.

- Converting to Cardinal basis function is impractical, hence go for approximate cardinal basis function.
Different strategies for ACBF

- Solving purely local problems. (Minimal-ACBF)
- Solving least-square problems. (LS-ACBF)
Different strategies for ACBF

- Solving purely local problems. (Minimal-ACBF)

- Solving least-square problems. (LS-ACBF)

Minimal-ACBF

For each \bar{x}_i, let $S_i = \{s_i(1), \ldots, s_i(m)\}$, subset of $\{1, 2, \ldots, n\}$ where $m \ll n$.
Enforcing cardinal condition only on the subset,

\[B_i^T \omega_i = e_i \] \hspace{1cm} (15)

\[B_i = \begin{pmatrix}
A_{s_i(1),s_i(1)} & A_{s_i(1),s_i(2)} & \cdots & A_{s_i(1),s_i(m)} \\
A_{s_i(2),s_i(1)} & A_{s_i(2),s_i(2)} & \cdots & A_{s_i(2),s_i(m)} \\
\vdots & \vdots & \ddots & \vdots \\
A_{s_i(m),s_i(1)} & A_{s_i(m),s_i(2)} & \cdots & A_{s_i(m),s_i(1)}
\end{pmatrix}_{m \times m} \] \hspace{1cm} (16)

\[W_{ij} = \begin{cases}
 w_{ik} & \text{if } j = s_i(k) \text{ for } j = 1, 2, \ldots, m \\
0, & \text{otherwise}
\end{cases} \] \hspace{1cm} (17)
LS-ACBF

- Similar to minimal-ACBF, except that cardinal condition is enforced on the whole set \(\{1, 2, \ldots, n\} \) of points

- Leads to an over-determined system \((n \times m)\)

Including some widely scattered points (special points) gives a better approximation to the cardinal function
Example

Franke function

Let \(\bar{x} = (\xi, \eta) \in \mathbb{R}^2 \)

\[
f(\xi, \eta) = \frac{3}{4}e^{-\left(\frac{(9\xi-2)^2+(9\eta-2)^2}{4}\right)} + \frac{3}{4}e^{-\left(\frac{(9\xi+1)^2}{49} - \frac{(9\eta-2)^2}{4}\right)10} \\
+ \frac{1}{2}e^{-\left(\frac{(9\xi-7)^2+(9\eta-3)^2}{4}\right)} - \frac{1}{5}e^{-\left(9\xi-4\right)^2-(9\eta-7)^2}
\]
Comparison table for condition number and iteration counts

Multi-Quadric:

<table>
<thead>
<tr>
<th>No of centers</th>
<th>condition no:</th>
<th>iter. count</th>
</tr>
</thead>
<tbody>
<tr>
<td>289 Unpreconditioned</td>
<td>7.8 (8)</td>
<td>289</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>6.7 (2)</td>
<td>75</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>2.0 (2)</td>
<td>46</td>
</tr>
<tr>
<td>625 Unpreconditioned</td>
<td>2.9 (9)</td>
<td>593</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>4.1 (3)</td>
<td>80</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>5.4 (2)</td>
<td>47</td>
</tr>
<tr>
<td>1089 Unpreconditioned</td>
<td>4.4 (10)</td>
<td>1089</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>3.4 (4)</td>
<td>133</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>9.8 (2)</td>
<td>76</td>
</tr>
</tbody>
</table>
Thin-Plate Splines:

<table>
<thead>
<tr>
<th>No of centers</th>
<th>Condition no:</th>
<th>iter. count</th>
</tr>
</thead>
<tbody>
<tr>
<td>289 Unpreconditioned</td>
<td>3.21 (7)</td>
<td>204</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>2.9 (3)</td>
<td>69</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>9.4</td>
<td>31</td>
</tr>
<tr>
<td>625 Unpreconditioned</td>
<td>1.1 (8)</td>
<td>346</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>2.4 (4)</td>
<td>68</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>1.7 (2)</td>
<td>36</td>
</tr>
<tr>
<td>1089 Unpreconditioned</td>
<td>1.9 (8)</td>
<td>454</td>
</tr>
<tr>
<td>LS-ACBF</td>
<td>5.6 (4)</td>
<td>96</td>
</tr>
<tr>
<td>LS-ACBF(with spl. points)</td>
<td>2.6 (2)</td>
<td>52</td>
</tr>
</tbody>
</table>
Finite Difference type formulae based on RBFs

(G.Wright & B.Fornberg)
Finite Difference type formulae based on RBFs

(G.Wright & B.Fornberg)

L - a linear differential operator & n_i - number of nodes in the nbd of \bar{x}_i
Finite Difference type formulae based on RBFs

(G.Wright & B.Fornberg)

\(\mathcal{L} \) - a linear differential operator & \(n_i \) - number of nodes in the nbd of \(\bar{x}_i \)

RBF-Finite difference Formulation

- Standard RBF Interpolant in Lagrange form

\[
 s(\bar{x}) = \sum_{i=1}^{n_i} \psi_i(\bar{x}) u(\bar{x}_i) \tag{18}
\]

where,

\[
 \psi_i(\bar{x}_k) = \delta_{ik}, \quad \text{for } k = 1, \ldots, n_i \tag{19}
\]
• In terms of $\phi(\|\bar{x} - \bar{x}_j\|)$’s

$$\psi_i(\bar{x}) = \frac{\det(A_i(\bar{x}))}{\det(A)}$$ \hspace{1cm} (20)

where, $A_i(\bar{x})$ is A with the i^{th} row replaced with

$$B(\bar{x}) = [\phi(\|\bar{x} - \bar{x}_1\|) \ \phi(\|\bar{x} - \bar{x}_2\|) \ \ldots \ \phi(\|\bar{x} - \bar{x}_n\|)]$$ \hspace{1cm} (21)
RBF-FD formulae for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j)$$ \hspace{1cm} (22)
RBF-FD formulae for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j)$$

(22)

Apply the operator \mathcal{L} to (18),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i) u(\bar{x}_j)$$

(23)
RBF-FD formulae for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j)$$ \hspace{1cm} (22)

Apply the operator \mathcal{L} to (18),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i)u(\bar{x}_j)$$ \hspace{1cm} (23)

$$\Rightarrow \quad d_j = \mathcal{L}\psi_j(\bar{x}_i)$$ \hspace{1cm} (24)
RBF-FD formulae for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j)$$ \hspace{1cm} (22)

Apply the operator \mathcal{L} to (18),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i) u(\bar{x}_j)$$ \hspace{1cm} (23)

$$\Rightarrow \quad d_j = \mathcal{L}\psi_j(\bar{x}_i)$$ \hspace{1cm} (24)

From the definition of ψ_j, d_j's can be calculated by solving,

$$Ad = (\mathcal{L}B(\bar{x}_i))^T$$ \hspace{1cm} (25)
RBF-Compact finite difference formulation

Given u at n points and $\mathcal{L}u$ at $l < n$, distinct numbers from $\{1, \ldots, n\}$,

- Hermite-Interpolant in Lagrange form

$$s(\bar{x}) = \sum_{i=1}^{n_i} \psi_i(\bar{x}) u(\bar{x}_i) + \sum_{i=1}^{l} \tilde{\psi}_{\sigma_i}(\bar{x}) \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (26)
RBF-Compact finite difference formulation

Given \(u \) at \(n \) points and \(\mathcal{L}u \) at \(l < n \), distinct numbers from \(\{1, \ldots, n\} \),

- Hermite-Interpolant in Lagrange form

\[
s(\bar{x}) = \sum_{i=1}^{n_i} \psi_i(\bar{x}) u(\bar{x}_i) + \sum_{i=1}^{l} \tilde{\psi}_{\sigma_i}(\bar{x}) \mathcal{L}u(\bar{x}_{\sigma_j})
\]

(26)

where,

\[
\psi_i(\bar{x}_k) = \delta_{ik}, \quad \text{for } k = 1, \ldots, n_i
\]

(27)

\[
\mathcal{L}\psi_i(\bar{x}_k) = 0, \quad k = 1, \ldots, l,
\]

(28)
and

$$\tilde{\psi}_{\sigma_i}(\bar{x}_k) = 0, \quad k = 1, \ldots, n_i$$ \hspace{1cm} (29)

$$\mathcal{L}\tilde{\psi}_{\sigma_i}(\bar{x}_{\sigma_k}) = \delta_{\sigma_i\sigma_k}, \quad \text{for } k = 1, \ldots, l$$ \hspace{1cm} (30)
and

\[\tilde{\psi}_{\sigma_i}(\bar{x}_k) = 0, \quad k = 1, \ldots, n_i \] \hfill (29)

\[\mathcal{L}\tilde{\psi}_{\sigma_i}(\bar{x}_{\sigma_k}) = \delta_{\sigma_i \sigma_k}, \quad \text{for } k = 1, \ldots, l \] \hfill (30)

- In terms of \(\phi(\|\bar{x} - \bar{x}_j\|) \)'s and \(\mathcal{L}\phi(\|\bar{x} - \bar{x}_j\|) \)'s

\[\psi_i(\bar{x}) = \frac{\det(A_i^H(\bar{x}))}{\det(A^H)} \] \hfill (31)
and

\[
\tilde{\psi}_{\sigma_i}(\bar{x}) = \frac{\det(A_{n+i}^H(\bar{x}))}{\det(A^H)}
\]

(32)

where \(A_{i}^H(\bar{x}) \) is \(A^H \) with \(i^{th} \) row replaced with

\[
B^H(\bar{x}) = [B(\bar{x}) \mid \mathcal{L}_{2\phi}(\|\bar{x} - \bar{x}_{\sigma_1}\|) \ldots \mathcal{L}_{2\phi}(\|\bar{x} - \bar{x}_{\sigma_l}\|)]
\]

(33)
RBF-CFD formula for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j’s and \tilde{d}_{σ_j}’s such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j) + \sum_{j=1}^{l} \tilde{d}_{\sigma_j} \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (34)
RBF-CFD formula for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j’s and \tilde{d}_{σ_j}’s such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j) + \sum_{j=1}^{l} \tilde{d}_{\sigma_j} \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (34)

Apply the operator \mathcal{L} to (26),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i) u(\bar{x}_j) + \sum_{j=1}^{l} \mathcal{L}\tilde{\psi}_{\sigma_j}(\bar{x}_i) \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (35)
RBF-CFD formula for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j's and \tilde{d}_{σ_j}'s such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j) + \sum_{j=1}^l \tilde{d}_{\sigma_j} \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (34)

Apply the operator \mathcal{L} to (26),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i) u(\bar{x}_j) + \sum_{j=1}^l \mathcal{L}\tilde{\psi}_{\sigma_j}(\bar{x}_i) \mathcal{L}u(\bar{x}_{\sigma_j})$$ \hspace{1cm} (35)

$$\Rightarrow d_j = \mathcal{L}\psi_j(\bar{x}_i), \quad \tilde{d}_{\sigma_j} = \mathcal{L}\tilde{\psi}_{\sigma_j}(\bar{x}_i)$$ \hspace{1cm} (36)
RBF-CFD formula for $\mathcal{L}u(\bar{x}_i)$

Given n points, for x_i, consider a stencil of n_i points, to compute d_j’s and \tilde{d}_{σ_j}’s such that,

$$\mathcal{L}u(\bar{x}_i) \approx \sum_{j=1}^{n_i} d_j u(\bar{x}_j) + \sum_{j=1}^{l} \tilde{d}_{\sigma_j} \mathcal{L}u(\bar{x}_{\sigma_j}) \quad (34)$$

Apply the operator \mathcal{L} to (26),

$$\mathcal{L}u(\bar{x}_i) \approx \mathcal{L}s(\bar{x}_i) = \sum_{j=1}^{n_i} \mathcal{L}\psi_j(\bar{x}_i) u(\bar{x}_j) + \sum_{j=1}^{l} \mathcal{L}\tilde{\psi}_{\sigma_j}(\bar{x}_i) \mathcal{L}u(\bar{x}_{\sigma_j}) \quad (35)$$

$$\Rightarrow \quad d_j = \mathcal{L}\psi_j(\bar{x}_i), \quad \tilde{d}_{\sigma_j} = \mathcal{L}\tilde{\psi}_{\sigma_j}(\bar{x}_i) \quad (36)$$

which is obtained by solving,

$$A^H [d \mid \tilde{d}]^T = (\mathcal{L}B^H(\bar{x}_i))^T \quad (37)$$
Numerical Examples

1. Poisson Equation in a unit square

\[\Delta u = f \quad \text{in } \Omega = (0, 1) \times (0, 1), \quad u = g \quad \text{on } \partial \Omega \]

where \(f \) and \(g \) are calculated from the exact solution

\[u(x, y) = e^{-(x-1/4)^2-(y-1/2)^2} \cos(2\pi y) \sin(\pi x) \]
Numerical Examples

1. Poisson Equation in a unit square

\[\Delta u = f \quad \text{in } \Omega = (0, 1) \times (0, 1), \quad u = g \quad \text{on } \partial \Omega \]

where \(f \) and \(g \) are calculated from the exact solution

\[u(\bar{x}) = u(x, y) = e^{-(x-1/4)^2 - (y-1/2)^2} \cos(2\pi y) \sin(\pi x) \]
Convergence of the coefficients of RBF-FD equations to usual FD equations when $h = 0.1$

<table>
<thead>
<tr>
<th>shape parameter (c)</th>
<th>coef. of $u_{i,j}$</th>
<th>coef. of the neighboring nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-612.4077</td>
<td>153.1019</td>
</tr>
<tr>
<td>0.2</td>
<td>-484.0981</td>
<td>121.0245</td>
</tr>
<tr>
<td>0.5</td>
<td>-417.0007</td>
<td>104.2502</td>
</tr>
<tr>
<td>1.0</td>
<td>-404.4338</td>
<td>101.1085</td>
</tr>
<tr>
<td>5.0</td>
<td>-400.1799</td>
<td>100.2802</td>
</tr>
<tr>
<td>10.0</td>
<td>-400.0450</td>
<td>100.0112</td>
</tr>
<tr>
<td>20.0</td>
<td>-400.0116</td>
<td>100.0029</td>
</tr>
<tr>
<td>30.0</td>
<td>-400.0043</td>
<td>100.0011</td>
</tr>
</tbody>
</table>
2. Poisson Equation in a unit disk

\[\Delta u = f \text{ in } \Omega = \{(x, y)|x^2 + y^2 < 1\}, \quad u = g \text{ on } \partial\Omega \]

where \(f \) and \(g \) are computed from the exact solution,

\[u(\bar{x}) = u(x, y) = \frac{25}{25 + (x - 0.2)^2 + 2y^2} \]
RBF-FD for scattered data
FD for uniform grid

rbf-fd ni = 5
FD 1.12e-4
rbf-fd ni = 9
rbf-cfd ni = 9 mi = 5

shape parameter (c)
Future plan

Extension to,

- non-linear convection-diffusion problems
- transient problems
References

[14] **G. Wright and B. Fornberg**, *Scattered node compact finite
difference-type formulas generated from radial basis functions., To appear in J. Comp. Phy.

Visible Research Output

THANK YOU