ON COVERING RADIUS OF RANK DISTANCE CODES

W.B. Vasantha Kandasamy and Suresh Babu

This paper studies the covering radius of rank distance codes. Codes with reasonably small covering radius are known as covering codes and these codes have wide applications in source coding and data compression.

\[
\binom{n}{m}
\]
denotes the number

\[
\frac{(2^n - 1) (2^n - 2) \ldots (2^n - 2^{m-1})}{(2^m - 1) (2^m - 2) \ldots (2^m - 2^{m-1})}
\]

where \(m \leq n\) and \(m, n\) are positive integers.

The number of vectors of rank \(i\) in the containing space \(V^n\) is

\[
L_i(n) = \binom{n}{i} (2^{N-1}) (2^{N-2}) \ldots (2^{N-i-1}) \text{ and } L_0(n) = 1.
\]

\(t(n, k) \leq n - k\) is proved and

All Rights Reserved. This work is Copyright © W.B. Vasantha Kandasamy and Suresh Babu, 2003. Mathematicians can use the above material for research purposes, but the work of the author(s) *must* be acknowledged. Violators of copyright, and those indulging in plagiarism and intellectual theft are liable for strict prosecution.

e-mail: vantha@iitm.ac.in
web: http://mat.iitm.ac.in/~wbv
\[t(n, k) \geq R = \left[\frac{(N + n)}{2} - \sqrt{\frac{(N + n)^2}{4} - N(n - k)} \right] \]

where \([x]\) is the least integer greater than or equal to \(x\). We further prove suppose \(m < n - k\) is an integer such that

\[n < \frac{N(m + 1) + (k + m + 1)^2}{k + m + 1} \]

Then \(n - k < (-n, k) < n - k\).