RELATION BETWEEN THE COVERING RADIUS AND RANK DISTANCE OF INDECOMPOSABLE BINARY CYCLIC CODES OVER 2-GROUPS

W.B. Vasantha Kandasamy and Suresh Babu

Let \(F \) be a finite field and \(G \) a group of order \(n \). Each right (left) ideal \(M \) of the group algebra \(FG \) is called an \(FG \)-code of length \(n \). If \(G \) is a cyclic group then the corresponding \(FG \)-code \(M \) is called a cyclic code of length \(n \). We define the concept of weight of an element indecomposability and minimum distance.

Suppose \(M \) is a linear code of length \(n \) and dimension \(k \) in \(\mathbb{Z}_2^G \). Then the covering radius \(R \) of \(M \) is the weight of the coset leader of greatest weight where a coset of \(M \) is the set \(x + M = \{ x + m \mid m \in M \} \) for \(x \in \mathbb{Z}_2^G \), and any element of minimum weight in a coset is called a leader of that coset. We mainly prove. Let \(C \) be an indecomposable cyclic code of length \(2^n \). Let the minimum distance of \(C \) be 2 and that of its orthogonal code \(C^\perp \) be \(2^r \); \(1 \leq r \leq m \). Then the covering radius of \(C \) is \(2^{m-r} \) and that of \(C^\perp \) is \(2^{m-1} \).