USING NON ASSOCIATIVE FINITE PSEUDO FIELDS

W.B. Vasantha Kandasamy and Dennis Williams

In this paper we construct a new algebraic structure called pseudo fields of order \(n^2 \), \(n > 3 \) and \(n \) an odd integer and prove for every such integer \(n \) there exists one and only one pseudo field. We then generalize the concept of pseudo fields to pseudo rings. In fact we prove for a given odd integer \(n, n > 3 \) there are several pseudo division rings. We define a pseudo field \(P \) as a set closed with respect to two binary operations "+" and "." such that \((P, +)\) is an additive abelian group. \((P, .)\) is a commutative loop under ".". In general \(a.(b + c) \) is \(\neq a.b + a.c \) for all \(a, b, c \) in \(P \). "." is not in general associative. We prove if the order of \(P \) is prime then \(P \) has no proper subset which is a pseudo field.