The notion of semivector spaces has become a subject of study in recent days. Vector spaces are defined over the fields and the vector spaces are additive abelian groups but semivector space are additive abelian monoids defined over semifields. Here we define linear transformation of semivector spaces defined over the same semifields. Only a few of classical results, which hold good in the case of vector spaces, are true in the case of semivector spaces. Most of the results in the case of semivector spaces happen to be distinctly different as the dimension for the semivector spaces is defined only when the semivector has unique basis. This has made the study of transformation of semivector spaces more interesting.