GROUPOID RINGS

W.B.Vasantha Kandasamy and S.Balaguru

In this paper, we introduce the notion of groupoid rings, which are analogous to semigroup rings or group rings. In this paper instead of using a semigroup or a group, we use groupoids where groupoids are nothing but non-associative semigroups; $G_m = \{g_0, g_1, \ldots, g_m\}, 0 \leq m \leq \alpha$ with a binary operation ‘\circ’ defined by $g \circ g = g_{(t+sg) \mod m}; t$ and s are integers chosen such that $(t, s) = 1$ and $1 < t < m$ and $1 < s < m$. Clearly (G_m, \circ) is a groupoid. Further the operation in general is non-associative. We in this paper, choose rings over which groupoid rings are defined, as \mathbb{Z} or \mathbb{Q} or \mathbb{R} only. Thus in this paper by $\mathbb{Z}G_m$, or $\mathbb{Q}G_m$ or $\mathbb{R}G_m$, we mean the groupoid rings of the groupoid G_m over \mathbb{Z} or \mathbb{Q} or \mathbb{R} respectively. We see $G_m \subseteq \mathbb{Z}G_m$, $G_m \subseteq \mathbb{Q}G_m$ and $G_m \subseteq \mathbb{R}G_m$ as $1 \in (\mathbb{Z}, \mathbb{Q} \text{ and } \mathbb{R})$. But in general $\mathbb{Q} \subseteq \mathbb{Q}G_m$, this can happen only when $1 \in G_m$. This is marked difference between groupoid rings and group rings. Further groupoid rings are non-associative. Thus for every $m, 1 < m < \alpha$, we get a class of non-associative rings $\mathbb{Z}G_m$, $\mathbb{Q}G_m$ and $\mathbb{R}G_m$. This method provides us a means to get non-abstract non-associative rings. Many other interesting properties about these structures are studied.