PROPERTIES OF GROUP SEMIRINGS WHEN SEMIRINGS ARE FINITE DISTRIBUTIVE LATTICES

W.B.Vasantha Kandasamy and R.Mohanraj

In this paper, we introduce and study groups over finite semirings. These finite semirings S are taken only as distributive lattices. Throughout this paper G will denote a group under multiplication and SG is the group semiring of the group G over the semiring S. Clearly $G \subseteq SG$ and $S \subseteq SG$ as both G and S contain the identity 1. We obtain several interesting results about these structures. Clearly the group semiring SG is not a distributive lattice. We prove the following results.

1. If G is a finite group, then the group semiring SG has non-trivial zero-divisors and non-trivial idempotents only which S is not a chain lattice.

2. If S is a chain lattice, the group semiring SG has only non-trivial idempotents and no zero-divisors, which is a marked difference between group rings and group semirings.

If G is a Torsion-free abelian group and S is a finite chain lattice, then SG is a semifield. These group semirings contain elements of
the form \(x \cdot y = g \) where \(g \) is the group element and \(x \) and \(y \) are elements from \(SG \setminus G \). Here we obtain condition on \(S \) and \(G \) so that we are guaranteed of such types of elements. For example the group semiring \(SG \) has units, then at least \(S \) must have a sublattice whose homomorphic image is isomorphic to a Boolean Algebra of order 4 and \(G \) must have at least elements of order 2.