ON THE CONSTRUCTION OF CIRCULANT TENSOR CODES

W.B.Vasantha Kandasamy and R.S. Rajadurai

An $n \times n \times n$ Tensor over a field F is an $n \times n \times n$ array

$$\Gamma = [\Gamma_{i,j,l}^n].$$

An $n \times n$ matrix $A = [a_{ij}]$ over a field F is called circulant if

$$a_{i,j} = a_{i,(j-1) \text{mod } n}.$$

M.Roth investigated the study of tensor codes for the rank metric in the year 1996. These classes of codes play a vital role in the correction of crisscross errors found in memory chip arrays. We in this paper generalize the definition of $n \times n$ circulant matrices to $n \times n \times n$ circulant tensors. Using this we construct the class of $n \times n \times n$ circulant tensor codes for rank metric. Such a construction of codes lessens the complexity in the correction of erasures in the received codeword. Also we give an erasure decoding technique for these classes of circulant tensor codes.

All Rights Reserved. This work is Copyright © W.B.Vasantha Kandasamy and R.S. Rajadurai, 2003. Mathematicians can use the above material for research purposes, but the work of the author(s) *must* be acknowledged. Violators of copyright, and those indulging in plagiarism and intellectual theft are liable for strict prosecution.

e-mail: vasantha@iitm.ac.in
web: http://mat.iitm.ac.in/~wbv