ON LOOP RINGS OF A SPECIAL CLASS OF LOOPS

W.B.Vasantha Kandasamy and Virgin Raj

This paper studies the class of loop rings, which are defined analogous to group rings. Here we use only the special class of loops called Moufang loops. A loop L is said to be a Moufang loop if it satisfies the Moufang identity viz. $(xy)(zx) = x((yz)x)$ for all $x, y, z \in L$. Here we assume the rings over which the loop rings are defined to be either a commutative ring with unit or a field. We prove in a loop ring for every Moufang loop over a ring or a field has a subset, which is a group algebra. Further we show the loop ring of a Moufang loop contains a semiprime associative subring and L contains a subset $\Delta (P)$ which has no elements of order p. For $P \subset L$, P a subgroup of L; P has no finite normal subgroup with order divisible by p. We know from Tim Hsu (1996) if L is a Moufang loop then L is diassociative, so the loop ring of Moufang loops yield non-trivial zero divisors and idempotents. Finally we establish the loop ring of a Moufang loop has a nontrivial subset which is a prime ring.