ON QUASI SEMI-COMMUTATIVE RINGS

W.B. Vasantha Kandasamy and Mary John

In this paper we introduce the notion of quasi semi commutative rings. We call an element \(x \in R \), where \(R \) is a ring to be quasi semi commutative if there exists a \(y \in R \), \((y \neq 0) \) such that \(yx - xy \) commutes with every element of \(R \). We define quasi semi commutator of \(x \) by \(Q(x) = \{ p \in R / xp - px \text{ commutes with every element of } R \} \). Clearly \(Q(x) \neq \emptyset \) for \(1, 0 \in Q(x) \) if \(R \) is a ring with unit. We state \(R \) to be a quasi semi commutative ring if every element in it is quasi semi commutative. Analogous to centre here we define the concept of quasi semi centre of the ring \(R \) as \(Q(R) = \{ x \in R / xp - px \text{ is quasi commutative} \} \). Clearly \(Q(R) \) is nonempty. One of the interesting observations is that the centre of the ring \(Z(R) \) of \(R \) is a subset of \(Q(R) \). We finally prove that \(Q(x) \) for any \(x \in R \) is not in general a multiplicatively closed set. Several interesting results in this direction are obtained.