T.K.Dutta in 1982 has introduced the concept of generalized left semi ideals of a ring R. He calls a non empty set S of a ring R to be a generalized left semi ideal of R if S is closed under addition and x^2's is in S for any $s \in S$ and $x \in R$. In this paper we define the concept of generalized semi ideals of groupoid rings. Groupoid rings are defined analogous to group rings where groups are replaced by groupoids G. In this paper we have taken the groupoids as non-associative semigroups under multiplication and R any commutative ring. We define generalized semi ideals in groupoid rings RG. If we take a finite groupoid G over $Z_2 = \{0, 1\}$ we prove

$$S = \left\{ 0, \sum_{g_i \in G} g_i \right\}$$

is a generalized semi ideal of the groupoid ring $Z_2 G$ if and only if $g_i (g_1 + \ldots + g_n) = g_1 + \ldots + g_n$ for all $g \in G$, where $G = \{g_1, \ldots, g_n\}$. Further we prove if R is a ring such that $R^2 = \{0\}$, G any groupoid then in RG the groupoid ring every additively closed subset of RG is a generalized semi ideal of RG. Finally we prove a nice characterization theorem for the existence of semi ideals in a groupoid ring FG where F is a field and G a finite groupoid with $G = \{g_1, \ldots, g_n\}$ such that $g_i (g_1 + \ldots + g_n) = g_1 + \ldots + g_n$.

All Rights Reserved. This work is Copyright © W.B. Vasantha Kandasamy and S. Narayanamoorthy, 2003. Mathematicians can use the above material for research purposes, but the work of the author(s) *must* be acknowledged. Violators of copyright, and those indulging in plagiarism and intellectual theft are liable for strict prosecution.

e-mail: vasantha@iitm.ac.in
web: http://mat.iitm.ac.in/~wbv