In this paper we for the first time introduce the notion of Neutrosophic pairs of numbers analogous to fuzzy numbers. Throughout $\langle \mathbb{R} \cup I \rangle$ where \mathbb{R} is a real, represents the neutrosophic ring. Clearly $\langle \mathbb{R} \cup I \rangle$ is not a domain, $\langle \mathbb{R} \cup I \rangle = \{a + bI \mid a, b \in \mathbb{R}, I^2 = I\}$ and I is the indeterminate. This $\langle \mathbb{R} \cup I \rangle$ is defined as the neutrosophic plane taking the x axis as real and y axis as the indeterminate axis. So the unit square with vertices [0, 0], [1, 0], [1, I] and [I, 0] forms a square defined as the neutrosophic unit square and is denoted by N_s. The neutrosophic unit square $N_s = \{a + Ib \mid a, b \in [0, 1], I^2 = I\}$, define the neutrosophic membership function $A_N : \langle \mathbb{R} \cup I \rangle \rightarrow N_s$. Using this A_N we define Neutrosophic Pairs of Numbers and develop several interesting results in this direction. This research will be used in fuzzy neutrosophic models.