CIRCULANT RANK CODES IN COMMUNICATION CHANNELS

W.B.Vasantha Kandasamy and Suresh Babu

We define a new type of codes on the space of circulant matrices over GF(2). Consider the Galois field GF(2^N) where N > 1. An element \(\alpha \in GF(2^N) \) is denoted by a N-tuple \((\alpha_0, \alpha_1, \ldots, \alpha_{N-1})\). We define a tool called circulant transpose \(T_c \) of \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{N-1}) \) and associate with each \(\alpha \in GF(2^N) \) a circulant matrix whose \(i^{th} \) column is \(\alpha_i c \) for \(i = 0 \) to \(N - 1 \). This gives a map \(f \) from \(GF(2^N) \), by \(V^N \). By defining a suitable distance function we obtain a circulant rank distance code of length N. This code can be used in communication channels with very high error probability or unpredictable error patterns. For a code of length N transmitted can be recovered even if \(N - 2 \) symbols are corrupted.