In this paper we define unique product loops and two unique product loops and initiate the study of them and their loop algebras, Strojnowski.A in his paper “A note on unique product groups” has proved that the definition of two unique product groups and unique product groups are equivalent. We are not able to show the equivalence of these two concepts in the case of loops. Further we prove in the case of loop algebras RL if L is a unique product loop which is power associative or disassociate then if \(ab = 0 \) in \(R \) \((a, b \in R) \) then we have \(ba = 0 \). Further \(R \) has no non zero nilpotents if and only if

\[
U(RS) = \{ \Sigma \alpha_g g / \text{there exist } \beta_g \in R \text{ with } \Sigma \alpha_g \beta_{g^{-1}} = 1 \text{ and } \alpha_g \beta_b = 0 \text{ if } gh \neq 1 \} \text{ where } S \text{ is a subgroup.}
\]