NEW COLORING OF ZERO DIVISOR GRAPH OF SOME SPECIAL ALGEBRAIC STRUCTURES

Name of the Student: K. Paramasivam
Name of the Guide: W.B. Vasantha Kandasamy
Student ID Number: MA03D001
Year: 2003-2008

This thesis investigates mainly the coloring problem of the zero-divisor graph of various commutative algebraic structures such as commutative groupoid, commutative semigroup, distributive lattice, commutative semiring and commutative loopring. The thesis mainly concentrates on vertex coloring of the zero-divisor graphs and its vertex chromatic number.

Chapter 1 provides an outline of the coloring problem of commutative algebraic structures. It also provides the basic concepts from graph theory and commutative algebraic structures, relevant to this thesis. A literature survey is given to the work in proper perspective.

Chapter 2 offers the concept of colorings to a commutative groupoid. Some new class of commutative groupoids using Z_n are constructed on which different binary non-associative

All Rights Reserved. This work is Copyright © W.B.Vasantha Kandasamy and K. Paramasivam, 2008. Mathematicians can use the above material for research purposes, but the work of the author(s) *must* be acknowledged. Violators of copyright, and those indulging in plagiarism and intellectual theft are liable for strict prosecution.
e-mail: vasanthakandasamy@gmail.com
d-web: http://mat.iitm.ac.in/wbv/public_html/home.htm
operations are defined and the chromatic number is computed. Given some well-known class of graphs, the existence of the corresponding zero-divisor semigroup is also studied in this chapter.

Chapter 3 deals with the coloring problem of the commutative semiring. Some new class of commutative semirings using \mathbb{Z}_2 and \mathbb{Z}_n are constructed and their chromatic numbers are computed. Finally, the chromatic number of finite Boolean algebra is computed. In Chapter 4, the zero-divisor graphs of some special class of loopings using \mathbb{Z}_2 and \mathbb{Z} are studied and their chromatic numbers are determined. In Chapter 5, the concept of generalized k-strongly edgemagic labeling is introduced. Necessary and sufficient condition for a triangle-free graph to be 1-strongly edgemagic is obtained and necessary condition for a disconnected graph to be 1-strongly edgemagic is also discussed. The 1-(strongly)-edgemagicness of an r-regular graph is completely determined. Finally, some well-known classes of graphs are proved to be 2-strongly edgemagic, which are 1-strongly edgemagic.

Parts of this thesis have been published as the following papers.

